

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 5 Examination in Engineering: March 2022

Module Number: EE5304

Module Name: Power Systems II (C-18)

[Three Hours]

[Answer all questions, each question carries 10 marks]

- Q1. a) i) What is the effect of unsymmetrical spacing of conductors in a 3 phase transmission line?
 - ii) Starting from first principles, obtain the line to line capacitance of a single phase line considering the effect of earth. Define any symbols used. Assume the permittivity of free space is 8.854×10^{-12} F/m.

[5.0 Marks]

b) Consider a single phase line with radius of a conductor 0.01 m, spaced 3.5 m apart and 8 m above the ground. Calculate and compare the capacitance of a conductor to neutral per km with and without considering the effect of the earth.

[5.0 Marks]

Q2. a) With suitable derivations, show that A, B, C, D parameters of a long transmission line can be given as follows: (symbols have their usual meanings)

$$A = \cosh(\gamma l)$$
; $B = Z_C \sinh(\gamma l)$; $C = \frac{1}{Z_C} \sinh(\gamma l)$; $D = \cosh(\gamma l)$

[4.0 Marks]

- b) A 60 MVA at 124 kV, 50 Hz at 0.8 power factor lagging load is fed by a long transmission line. It is found that the resistance and reactance are 25.3 Ω and 66.5 Ω respectively. Admittance of the line due to charging capacitance is 0.442 x 10-3 S.
 - i) Calculate A, B, C, D constants of the line.
 - ii) Find sending end voltage, sending end current, and sending end power factor.
 - iii) What is the efficiency of this line?

[6.0 Marks]

Q3. a) Consider a portion OP of a curved length *l* of the wire shown in Figure Q3 which is hanging in still air with O as the lowest point on the wire. Let the weight of conductor per meter length be w kg.

- i) Derive the parabolic approximation of the catenary formed by the cable.
- ii) Derive an expression for the maximum tension of the cable.

[4.0 Marks]

- b) An overhead transmission line has a span of 275 m between level supports. The conductor has a radius of 0.9765 cm and weighs 0.844 kg/m and has an ultimate breaking strenght of 11925 kg. Conductor has a radial covering of ice 0.953 cm thick and is subjected to a horizontal wind pressure of 40 kg/m² of the ice covered projected area. Factor of safety is 3.0. Density of the ice is 913.5 kg/m³.
 - i) Determine the sag of the transmission line.
 - Determine the vertical sag of the transmission line.

[6.0 Marks]

- Q4. a) i) What is the load flow study in a power system?
 - ii) Consider the 3-bus power system shown in Figure Q4. All the notations on the figure have their usual meanings. Using first principles, derive a general expression for the admittance matrix of the system. Clearly define any symbols used.
 - iii) What are the three types of buses available in a typical power system. State the known and unknown variables of each type of buses.

[4.0 Marks]

- b) Table Q4. i) and Table Q4. ii) list the data of the 3-bus power system shown in Figure Q4. The voltage at bus-1 is 1.3 40° p.u.
 - i) Calculate the admittance matrix of the 3-bus power system.
 - ii) Calculate the phasor values of the voltages at buses 2 and 3 using Gauss Seidel method. Perform calculations for two iterations.
 - iii) Calculate the active and reactive power of bus-1 after second iteration.

[6.0 Marks]

- Q5. a) i) What is meant by Economic Load Dispatch (ELD)?
 - ii) What are the factors affecting the total power generation cost of a power system?
 - iii) A power system consists of n thermal power plants. The fuel cost functions of these power plants in \$/h are $C_{G1}, C_{G2}, ..., C_{Gn}$. The system load is P_L . Show that for most economic operation, all thermal plants must operate at equal incremental cost. Neglect the transmission loss and the generator power limits.

[4.0 Marks]

b) A power system consisting of two thermal power plants supplies a load of 850 MW. The fuel cost function in \$/h of these two power plants are

$$C_{G1} = 275 + 5.4 P_{G1} + 0.0014 P_{G1}^2$$

 $C_{G2} = 412 + 4.5 P_{G2} + 0.0027 P_{G2}^2$

 P_{G1} and P_{G2} are in MW.

- i) Find the power outputs of the two generators that results minimum total generation cost. Neglect the transmission line losses.
- ii) Calculate the total generation cost for the power generation found in part i).
- iii) The power loss function for the above power system is

$$P_{loss} = \alpha P_{G1}^2 + \beta P_{G2}^2$$

where P_{G1} and P_{G2} are in MW.

The optimal power outputs of generators G_1 and G_2 that results minimum total generations cost are found to be 551.08 MW and 410.12 MW respectively. Calculate the α and β coefficients of the loss function.

[6.0 Marks]

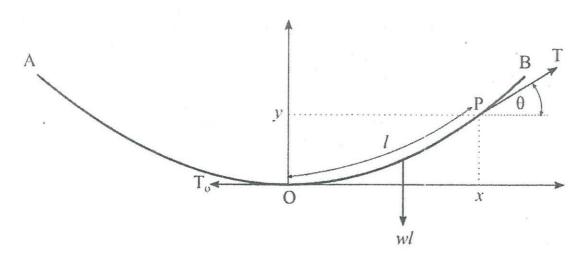


Figure Q3.

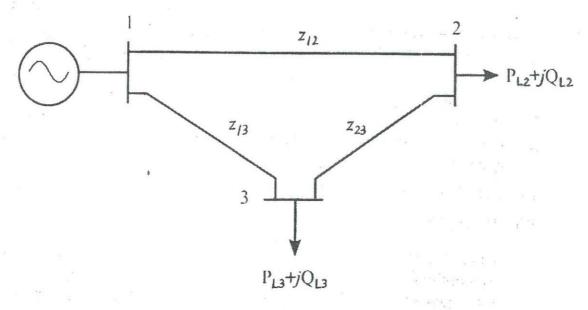


Figure Q4.

Table Q4. i) Loads.

Bus No.	P (p.u.)	Q (p.u.)
2	4.4	1.4
3	6.2	2.8

Table Q4. ii) Line impedances.

Bus No.	Line impedance (p.u	
1-2	0.014+0.023j	
1-3	0.023+0.039j	
2-3	0.031+0.047j	