

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 3 Examination in Engineering: July 2022

Module Number: EE3301

Module Name: Analog Electronics (N/C)

[Three Hours]

[Answer all questions, each question carries 10 marks]

- Q1 a) Figure Q1.1 shows a fixed biased N-channel JFET. Here, V_{DD} = 16V, V_{GS} = -1.5 V and R_D = 2 k Ω .
 - i) Find the Q point (I_D , V_{DS}) of the circuit $I_{DSS} = 10$ mA and $V_P = -4V$.
 - ii) Find the Q point (I_D , V_{DS}) of the circuit if I_{DSS} and V_P are changed to 12 mA and -4.2V, respectively.

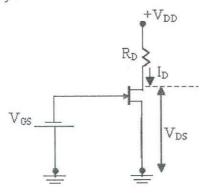
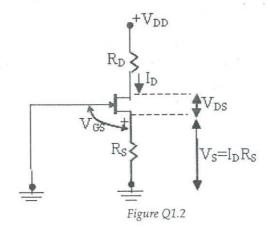



Figure Q1.1

[4.0 Marks]

- b) Figure Q1.2 shows a self-biased N-channel JFET. Here, V_{DD} = 16 V, R_S = 375 Ω and R_D = 2 k Ω .
 - i) Find the Q point (I_D , V_{DS}) of the circuit, when I_{DSS} = 10 mA and V_P = -4V.
 - ii) Find the Q point (I_D, V_{DS}) of the circuit, if I_{DSS} and V_P are changed to 12 mA and -4.2V, respectively.

[4.0 Marks]

c) Explain the advantage of self-biasing over fixed biasing based on the answers obtained for Q1. a) and Q1. b).

[2.0 Marks]

Q2 a) Briefly explain the importance of current mirrors in analog IC design.

[2.0 Marks]

- b) Figure Q2 shows a current mirroring circuit for three transistors, namely, Q1, Q2, and Q3.
 - i) Approximate the Q points (Ic, VcE) of Q1, Q2, and Q3.
 - ii) Find the exact (rounded to 2 decimal places) Q points (I_C,V_{CE}) of Q1, Q2, and Q3. Note that β = 150.

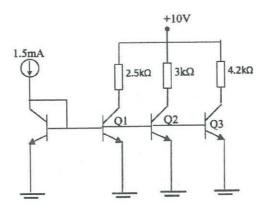


Figure Q2

[6.0 Marks]

- c) Briefly explaing the role of differential amplifiers in noise filtering [2.0 Marks]
- Q3 a) Briefly explain the DC offset of an operational amplifier.

[2.0 Marks]

- b) Figure Q3 shows an integrating amplifier.
 - i) Derive an expression for the output v_0 of the integrating circuit in time(t) domain assuming the ideal conditions of the operational amplifier.
 - ii) Derive an expression for the output v_0 of the integrating circuit in time(t) domain considering the DC offset as v_{os} , where $v_s = 0$.
 - iii) Briefly explain why the circuit shown in Figure Q3 is incapable of delivering the expected output with the DC off-set.
 - iv) Propose a modified circuit for the integrating amplifier that will compansate the DC offset's effect.

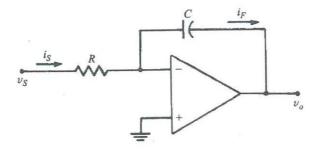


Figure Q3

- Q4 a) Answer the following questions based on Figure Q4.1.
 - i. Derive an expression for the output v_0 of the amplifier circuit.
 - ii. Identify the mathematical operation performed by the circuit.

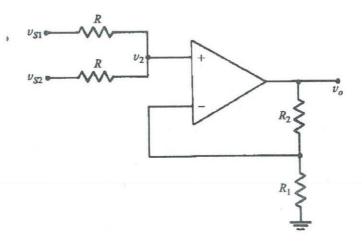


Figure Q4.1

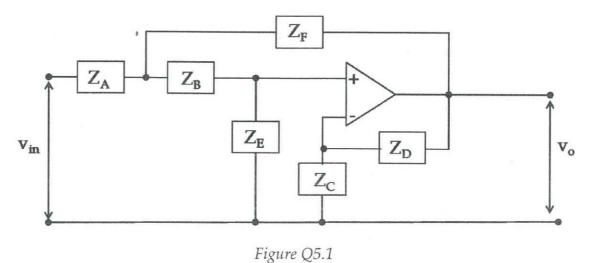
[4.0 Marks]

- b) A musician wants to mix sounds of three music instruments electrically.
 - i) Propose a basic circuit using opamps to conduct the above mentioned task
 - ii) Explain how ratios of mixing will be controlled.

[6.0 Marks]

Q5 a) Explain two methods in which the stability of a filter can be determined in the design stage.

[2.0 Marks]


b) Draw a circuit of a simple high pass filter and explain how the output is being controlled by the components in the circuit

[3.0 Marks]

c) Design a second-order VCVS low-pass Butterworth filter with cut-off frequency 2.5 kHz. The gain in the pass band should be 2. The VCVS design or Sallen-Key circuit is given is Figure Q5.1. You may use any of the charts given in Figure Q5.2.

You may use $C = 0.05 \mu F$ (If this result in impractical values revise the choice).

[5.0 Marks]

Page 4 of 5

Table 14-1 VCVS Filter Components

	Z_A	Z_B	Z;	Zo	Ž ₅	\mathbf{Z}_{F}
Low-Pass Filter High-Pass Filter	R_1	R_2	R_3	R_4	C_1	С
22.67. 2 003 1 11161		C	κ_3	R ₄	R_2	R_1

Table 14-2
Second-Order Low-Pas's Butterworth VCVS Filter Designs

	Circuit Element Valuesa						
Gain	1	2	4	6	8	10	
R_1	1.422	1.126	0.824	0.617	0.521	0.462	
R_2	5.399	2.250	1.537	2.051	2.429	2.742	
R_3	Open	6.752	3.148	3.203	3.372	3.560	
R_4	0	6.752	9.444	16.012	23.602	32.038	
C_1	0.33C	C	2 <i>C</i>	2 <i>C</i>	2 <i>C</i>	2C	

[&]quot; Resistances in kilohms for a K parameter of 1.

Table 14-3
Second-Order Low-Pass Chebyshev VCVS Filter Designs (2 dB)

Gain	Circuit Element Values"						
	1	2	4	6	8	10	
$\frac{R_1}{R_2}$	2.328 13.220	1.980	1.141	0.786 1.957	0.644 2.388	0.56	
R_4 C_1	Open 0 0.1 <i>C</i>	7.069 7.069	3.320 9.959 2C	3.292 16.460	3.466 24.261	3.67 33.03	

[&]quot;Resistances in kilohms for a K parameter of I.

Table 14-4
Second-Order High-Pass Chebyshev VCVS Filter Designs (2 dB)

Gain	Circuit Element Values"							
	1	2	4	6	8	10		
R_1 R_2 R_3	0.640 3.259 Open	1.390 1.500 3.000	2.117 0.985 1.313	2.625 0.794 0.953	3.040 0.686 0.784	3.399		
R ₄	0	3.000	3.939	4.765	5.486	0.681 6.133		

[&]quot; Resistances in kilohms for a K parameter of 1.

Figure Q5.2

Source: Reprinted from Rapid Practical Designs of Active Filters. D. Johnson and J. Hilburn. Copyright © 1975, John Wiley and Sons, Inc., by permission of John Wiley and Sons, Inc.