ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iv
LIST OF TABLES	vi
ABSTRACT	viii

2.0	MATERIALS	AND	METHODS	12

2.1	Experimental system	12
2.2	Diets	14
2.3	Husbandry aspects	20
2.4	Digestibility	22
2.5	Body composition	23
2.6	Method of Analyses	23
2.7	Statistical Analyses	25

3.0		RESULTS	26
	3.1	General Observations	26
	3.2	Mortality	27
	3.3	Physical parameters	27
	3.4	Diets	27

•

3.5	Food Consumption	27
3.6	Growth	38
3.7	Feed evaluation	47
3.8	Protein utilization	48
3.9	Digestibility	52
3.10	Ingredient digestibility	58
3.11	Body composition	59
3.12	Economic evaluation	64

4.0 DISCUSSION

67

. .

4.1	Food consumption	67
4.2	Feeding frequency	69
4.3	Growth	72
4.4	Feed utilization	74
4.5	Protein utilization	76
4.6	Digestibility	78
4.7	Carcass composition	81
4.8	Economic evaluation	82

5.0	CONCLUSIONS	84
5.0	LUNCLUSIUNS	84

· •

6.0 REFERENCES

.

iii

86

LIST OF FIGURES

FIGUR	E TITLE	Page
1.	Schematic diagram indicating the	
	experimental layout design.	15
2.	Changes of daily food consumption over weekly	
	intervals in experiments 1-4.	29
з.	Changes of daily food consumption over weekly	
	intervals in fish maintained on C1 and	
	F1 diets.	30
4.	Changes in daily food consumption of fish, fed	
	\underline{V} . <u>catiang</u> mixed diets, in experiment 5.	32
5.	Changes in daily food consumption expressed	
	as % body weight in small size fish, fed \underline{F} .	
	<u>mungo</u> mixed diets in experiment 5.	33
6.	Daily fluctuations of food consumption in large	
	size fish, fed C2, V3, V4 and P2 diets.	34
7.	Scatter plot to show the relationship of % food	
	consumption to body weight in <u>O.niloticus</u>	
-	maintained on 25% protein diets.	35
8.	Relationship of absolute daily food consumption	
	to body weight in fish maintained on <u>V</u> . catiang	
	mixed diets.	36
9.	Relationship of absolute daily food consumption	
	to body weight in fish maintained on <u>F</u> . <u>mungo</u>	
	mixed diets	37

.

•

	10.	Increase in average weight of fish in	
		experiment 1 to 4.	39
	11.	Increase in average weight of fish in	
		experiment 5 and 6.	40
	12.	Changes of %ADG in relation to plant protein	
		substitution to the total protein content	
		level of the diets.	45
	13.	Changes of SGR, %ADG, FCR PER and NPU in 3	
		protein levels of reference diets.	46
	14.	Changes of FCR and PER in 20%protein diets.	49
	15.	Body composition of <u>O</u> . <u>niloticus</u> maintained on	
		<u>V. catiang</u> diets.	62
	16.	Body composition of <u>O</u> . <u>niloticus</u> maintained on	~
		<u>P. munqo</u> diets.	63
•			

v

. .

LIST OF TABLES

No.	TITLE	Page
1.	Nutrient composition of the selected legume	
	seeds, <u>Viona catiang</u> and <u>Phaseolus</u> <u>munoo</u> .	8
2.	Details of experimental conditions and	
	the diets tested.	1.6
3.	Formulae and proximate composition of the	
	reference diets.	18
4.	Formulae and proximate composition of the	
	test diets.	19
5.	Percentage mortality of the fish in different	
	treatments.	28
6.	Growth performance of <u>O</u> . <u>niloticus</u> of 2	
1.1.1	size groups fed different diets at 2 feeding	
	frequencies.	42
7.	Growth performance of <u>O</u> . <u>niloticus</u> fingerlings	
	(2.6044± 0.52 g) fed on reference and test diet	5. 43
8.	Growth performance of <u>D</u> . <u>niloticus</u> fingerlings	
	(4.3889 <u>+</u> 0.32 g) fed four test diets.	44
9.	Dry matter, protein and lipid digestibility of	
	fish fed four types of diets at two different	
	frequencies (digestibility was calculated	
	using chromic oxide as the marker).	53
10.	Dry matter, protein and lipid digestibility	
	of <u>O</u> . <u>niloticus</u> fed different diets.	54

Dry matter, protein and lipid digestibility 11. of <u>O</u>. <u>niloticus</u> fed four types of diets at two frequencies, (Crude fibre used as the marker in the diets). 56 12. Dry matter, protein and lipid digestibility of the same diets as in Table 10 based on crude fibre as the marker. 57 13a. Proximate composition of the mixed diet and ingredient digestibility of the diets VO and PO 58 ь. Dry matter, protein and lipid digestibility of 58 the ingredients. 14. Body composition of fish fed 4 diets at two 60 frequencies. 15. Body composition of fish fed different diets in experiment 5. 61 16. Economical camparison of the profitability of the diets. 65

vii