University of Ruhuna - Faculty of Technology Bachelor of Information & Communication Technology Degree Level 3 (Semester 2) Examination August 2020

Course Unit: ICT3273, Advanced Database Management Systems

Time Allowed: 02 hours

This question paper contains 06 pages including this instruction page.

IMPORTANT INSTRUCTIONS:

- 1. The medium of this examination is English.
- 2. This is a Closed Book examination.
- 3. This Examination consists of four (04) questions that are given equal marks.
- 4. You must answer all four (04) questions in this examination.

- 1. a. Different ways are used to store data records in Database Management Systems.
 - i. Write down one (01) advantage and one (01) disadvantage of the heap file organization.

[10 marks]

ii. Differentiate *Pile File Method* and *Sorted File Method* when inserting a record to a sequential file organization.

[10 marks]

- b. Indexing in databases are defined based on its indexing attributes.
 - i. By using an example briefly describe the clustered index.

[10 marks]

ii. Differentiate *Dense Primary Index* and *Sparse Primary Index* using suitable diagrams.

[20 marks]

c. Linear hashing is a dynamic hashing technique which offers a lot of flexibility with respect to the timing of bucket splits.

Use the given Linear Hashing Index snapshot in Figure 01 to answer the questions given below. Assume that a bucket split occurs whenever an overflow page is created

Level=0, N=4

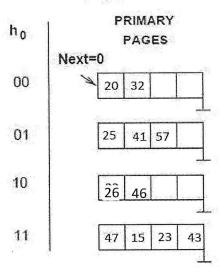


Figure 01

i. What is the maximum number of entries that you can enter before you are going to have a split bucket? Give your reasons.

[10 marks]

ii. Show the file after inserting 46 and 59. Clearly show the primary pages, if any overflow pages, changes in Level, N, Next, h₀ etc.

[30 marks]

iii. Write down the value of Level and Next if all four (04) buckets have been split.

[10 marks]

- 2. a. Magnetic disks are used as secondary storage devices to store data. Assume that there is a disk with a sector size of 512 bytes, 1000 tracks per surface, 100 sectors per track, five (05) double sided platters and average seek time of 10 milliseconds.
 - i. What is the capacity of the disk?

[04 marks]

ii. No of cylinders the disk has.

[04 marks]

iii. Two (02) valid block sizes and two (02) invalid block sizes.

[04 marks]

iv. If the disk platters rotate at 7200 rpm (revolutions per minute), what is the maximum rotational delay?

[04 marks]

v. what is the transfer rate of the disk if two (02) track of data can be transferred per revolution?

[04 marks]

- b. B+ tree is a dynamic structure where the height of the tree grows and contracts as records are added and deleted.
 - i. Compare a leaf node and a non-leaf node with m entries in a B+ tree by using a suitable diagram.

[10 marks]

ii. Insert 95 into below given B+ tree in Figure 02 and redraw the form of B+ tree after the operation.

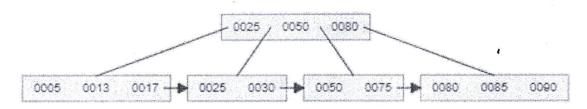


Figure 02

[20 marks]

iii. Delete 50 from above part (b.) (ii.) obtained form and redraw the form of B+ tree after the operation.

[20 marks]

- c. Query optimization is the process of selecting the most efficient query evaluation plan.
 - i. Use below given relations and SQL query to answer the question given below.

 lecturer(<u>lec_id</u>, name, designation)

 subject(<u>sub_id</u>, title, credit)

 teach(lec_id, sub_id, duration)

SELECT S.title, L.name
FROM lecturer L, subject S, teach T
WHERE L.lec_id = T.lec_id AND S.sub_id= T.sub_id
AND L.designation = "professor" AND T.duration < 30;

Construct an initial query tree to represent above SQL query with cartesian product.

[10 marks]

ii. Produce an optimized query tree by applying heuristic transformations to the initial query tree obtained part (b.) (ii.) State the heuristics you have used.

[20 marks]

3. a. Several problems can be occurred when database transactions are executed concurrently.

i. Briefly describe ACID properties of a transaction.

[10 marks]

ii. Use the given below schedule and variable values to answer the questions given. sum =0, avg =0, x=100, y=200, z=300

T_1	T_2
	read(z);
	sum := sum + z;
read(x);	
x := x - 50;	
write(x);	
	read(x);
	sum := sum + x;
	read(y);
	sum := sum + y;
	avg := sum/3;
	commit;
read(y);	
y := y + 50;	
write(y);	
commit;	

1. Write down the value of average after execution of the given schedule.

[05 marks]

2. Write down the value of average if T_1 executes before T_2 .

[05 marks]

3. Write down the value of average if T_1 executes after T_2 .

[05 marks]

4. Recognize and briefly describe the problem and the reason that you have

identified for the above part (a.) (ii) schedule in the context of concurrent execution of transactions.

[10 marks]

- b. Database is restored to the most recent consistent state just before the time of failure.
 - i. List down two (02) reasons for transaction failures.

[05 marks]

ii. Briefly describe Deferred Update technique.

[10 marks]

iii. Differentiate current directory and shadow directory in shadow paging.

[10 marks]

c. Consider the four (04) transactions T1, T2, T3 and T4 and the schedule S given below.

T1: r1(x); w1(x); r1(y); w1(y)

T2 : r2(z); r2(y); w2(x)

T3 : r3(y); r3(z); w3(y); w3(z)

T4 : r4(z); w4(z); r4(x)

- S: r3(y); r3(z); r1(x); w1(x); w3(y); w3(z); r2(z); r4(z); w4(z); r1(y); w1(y); r2(y); w2(x); r4(x)
- i. Identify and write down two (02) conflict operations and two (02) non conflict operations in the given schedule.

[10 marks]

ii. Construct the precedence directed graph for schedule S and by giving reasons state whether the schedule is serializable or not. If the given schedule is serializable write down the equivalent serial schedule.

[30 marks]

- 4. a. A distributed database (DDB) is an integrated collection of databases that is physically distributed across sites in a computer network.
 - i. Write down three (03) advantages of DDB.

[10 marks]

ii. Briefly describe the primary site technique in distributed concurrency control.

[10 marks]

b. Construct a wait for graph for the given schedule with four (04) transactions and identify whether the given transactions are in a deadlock situation.

[20 marks]

T1	T2	T3	T4
11(A); r1(A)			
		13(B); r3(B)	•
	12(C); r2(C)		

			14(D); r1(D)
			14(A);
		13(C);	
11(B);			
1	12(D);	3	

- c. Two phase locking protocols(2PL) are requires both locks and unlocks being done in two phases.
 - i. Identify and briefly describe the two (02) phases of 2PL.

[10 marks]

ii. Consider the given below schedule with two transactions T1 and T2. Propose a plan using 2PL to ensure a conflict serializable schedule for the given transactions.

T2
r2(X);
X = X + 10;
w2(X)
COMMIT;

[30 marks]

d. Consider the given below schedule with two transactions T1, T2, T3 and T4. The time stamp values are as follows.

$$TS(T1) = 20$$
, $TS(T2) = 30$, $TS(T3) = 40$, $TS(T4) = 45$

Read time stamp of X: $R_TS(X) = 5$ Write time stamp of X: $W_TS(X) = 10$;

T1	T2	T3	T4
R1(X)			
		R3(X)	
		W3(X)	
	R2(X)	,	1
W1(X)			
			W4(X)

Calculate $R_TS(X)$ and $W_TS(X)$ at the end of this schedule by applying basic time stamp ordering algorithm.

[20 marks]