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Abstract

In this paper, several predictive models are tested for material property predictions of two-ply homogenized carbon fiber
composites. The uncertainty of the constituent material properties yields uncertainties in the entries of the ABD stiffness
matrix. These variations in the ABD stiffness entries are attempted to be captured using predictive models, namely, artificial
neural networks and polynomial regression. Using Latin-Hypercube sampling technique, the constituent (fiber and resin)
parameters are randomly sampled in the input space. For each entry in the input space, an ABD stiffness matrix is generated
using a multiscale modeling technique and stored in the database as the output. Based on error estimates, the accuracy of
predictions is evaluated using cross-validation on test folds. The non-zero entries in the A and D submatrices are observed to
have very small prediction errors, whereas very small values appearing in B submatrix due to non-symmetric tow material
properties are ignored. It is found that for the composite considered in this work, the linear regression model yields the
highest accuracy whereas Neural network predictions are ranked second. This observation is justified as model training and
testing were performed with less than a thousand data points, which is comparatively a low number for an artificial neural

network model.
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Introduction

Background

Utilizing fibre-based textile structures as the compos-
ite reinforcement results in making composite more
tailorable and effective for applications where vari-
ous types of loads are anticipated to support by the
structure [1]. Also, this facilitates structures to be
lightweight, adaptable, and durable. In light of this,
fibre composite materials are widely employed in the
aerospace industry.

The deployment of woven carbon fibre composites
in deployable boom structures, such as the deploy-
able antenna employed in the Mars Advanced Radar
for Subsurface and Ionosphere Sounding (MARSIS)
mission, is the main emphasis of this study. The full
realisation of the potential behaviour of the structures
following implementation is essential to the success
of these missions [2]. But because to the challenges
and limitations associated with establishing micro-
gravity conditions, doing experimental research is
challenging. Therefore, the main solution for under-
standing of the behaviour of these physical systems
is through computer simulations.
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Figure 1: MARSIS deployable boom antenna

But both the complex geometry and non-linear
behaviour of constituents of these composites make
it more difficult to forecast the overall mechanical
behaviour. The Multiscale modeling approach can be
identified as a popular strategy to overcome this issue
where several models at various scales are utilized
simultaneously to describe the system. Typically,
various models concentrate on various resolution
scales.

The necessity of multiscale modeling typically re-
sults from inaccuracy, or the requirement of higher
computational cost for the macroscale models and
excess information provided by microscale models.
Multiscale modeling can achieve good agreement
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between efficiency and accuracy by merging those
different scales simultaneously. Multiscale modelling
requires identifying of the different scales accurately
in terms of their geometry, material responses and
underlined mechanics.

The mechanical or material inputs used for the
macroscale analysis are based on ideal conditions.
Therefore, uncertainties should be incorporated into
these inputs in order to reflect the uncertainties that
exist in the actual world. However, it costs an exten-
sive amount of processing resources to represent both
the macroscale and the microscale together. A predic-
tive model would thus be highly beneficial in taking
into account these uncertainties in the analysis.

Data-driven methods have paved their way into
mechanical analysis, material design of systems and
various other aspects related to continuum mechan-
ics. A model is trained on a labelled dataset in su-
pervised learning, a type of machine learning where
the input data is linked to the matching output or
target. Learning an input-output mapping will en-
able the model to generate precise predictions on
brand-new data. In multiscale homogenization com-
munities, these techniques are the tools of choice
to mitigate the associated heavy computational cost
and poor performance in nonlinear problems [3, 4].
These methods include Artificial Neural Networks
(ANNSs), Gaussian Process Regression (GPR), Poly-
nomial Regression, Support Vector Machines (SVM),
Graphical models, Sparse Kernel Machines, etc. [5].
Traditionally, ANNSs are preferred in the absence of
prior knowledge of the data or the process of data
generation. Moreover, ANNs perform well in the
presence of abundant data whereas techniques like
GPR suffer from the curse of dimensionality at the
presence of very large databases. In this paper, it
is not intended to evaluate the suitability of avail-
able techniques, but to utilize widely used methods
to predict the homogenized material properties of
woven composites.

Related work

Investigations have been carried out to determine the
effects of different parameters in the microscale to the
mechanical properties in the macro scale in different
research.

A tow is a material comprised of fibres and matrix
that has a significant length and a relatively small
cross-section. Plain woven composite is tailored by
interlacing tows in warp and weft direction and im-
pregnated with resin.

The research carried out by [6] investigates the ef-
fect of size and the relative positioning of the plies in
the Representative Unit Cell (RUC) on the mechan-
ical properties of a two-ply carbon fiber laminate.

The tow is homogenized to a transversely isotropic
material and the tow path was idealized to a Cubic
Bezier Spline curve during the modeling done using
the Abaqus software. The boundary conditions were
applied according to the Kirchhoff Love Plate theory
and the ABD stiffness matrix was derived from the
software. The outcomes of the analysis done by vary-
ing the RUC size highlight that the RUC size has no
significant effect on the results except for Poisson’s
ratio. This provides a framework for the approach
required for the multiscale model in this research.

A similar study was carried out by [7] using the
Abaqus software to explore the response of the two-
ply plain-woven carbon fiber composites with respect
to different fiber volume fractions, traction coeffi-
cients, and fiber or matrix properties. The analyses
done regarding the effects of fiber volume fractions
exhibits the linear effect on the ABD stiffness ma-
trix but also highlights that the Poisson’s ratio re-
mains immune to the variations in the fiber volume
fractions. Surprisingly, the traction coefficients have
negligible effects on the stiffness matrix except for
the homogenized shear modulus. Nevertheless, it
was determined that the mechanical characteristics
of the composite were more influenced by the mate-
rial properties. This provides the basis for the choice
of introduction of uncertainties in the fibre and resin
material properties in this research.

Multiscale modelling of woven
carbon fibre composites

Theoretical review

Three sequential modelling scales may be used in
models for both analytical and numerical studies
to combine the requirements of different applica-
tions. Commonly used scales for textile composites
are micro-mechanical, meso-mechanical, and macro-
mechanical scales [8, 9]. Individual behaviour of resin
and tows is emphasized in micromechanical scale tak-
ing into account their constituent properties, compo-
sition and the structure. Meso-mechanical modelling
stage’s fundamental focus is on understanding the
mechanical behaviour of a Representative Unit Cell
(RUC) considering tows as homogeneous structures.
Macromechanical modelling stage simulates how the
woven composite would behave under complex de-
formations.

Homogenization techniques combine two subse-
quent scales, through the selection of appropriate
properties and distributions from acquisitions of the
earlier scale.
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Figure 2: Representative Unit Cell (RUC) of size 2x2

Two-scale linear modelling of woven
carbon fibre composites

In the micro-mechanical stage, idealized form of tows
is three-dimensional continuums having transversely
isotropic properties. Rules of mixtures, Halpin-Tsai
semi-empirical relation [10] and a method proposed
by [11] were used to estimate elastic constants of
tows.

Fibre volume fraction of the considered laminate
estimated by a weighting procedure [2] was 0.62.
Assuming the entire fibre fraction of the model is
concentrated in tows, Vf = 0.62 was used to charac-
terize tows, averting possible voids in the laminate.
Constituent properties were obtained from material
specifications for HexPly 913 resin and T300-1k car-
bon fibres published by the manufacturer (Table 1).
The material properties in the fibre and matrix are
used to obtain the tow properties through rules of
mixtures [7] and the homogenized properties of tows
are presented in Table 2.

Table 1: Constituent properties (Source: Torayca. Technical
Data Sheet No. CFA, T300 Data sheet. Toray Industries, Inc.)

Constituents
Properties T300-1k HexPly
fibre 913
epoxy
Longitudinal stiffness,
Ey(N/mm?) 233,000 3,390
Transverse stiffness,
Ez(N/WlTﬂz) 23,100 3,390
Shear stiffness,
G12(N/mm2) 8,963 1,210
Poisson’s ratio,
1/12(N/mm2) 0.2 0.41
Density, p(kg/m?>) 1,760 1,230
Areal weight of fab- 98 30

ric/film, W(g/m?)

Figure 3: Dry fibre RUC

Table 2: Tow properties

Tow Properties Value
Longitudinal Young’s modulus,
Transverse stiffness,
E2 — E3(N/mm2) 10,427
Shear stiffness,
Gy = G13(N/mm2) 3,378
In-plane Shear stiffness,
G23(N/mm2) 3,498
Poisson’s ratio, v1o = vp3 0.28
Poisson’s ratio, 13 0.49

In the mesomechanical stage, 2x2 RUC was se-
lected in agreement with a previously done study
on size effect [6]. Geometrical parameters which
were selected congruent with the micrographs of the
considered laminate [2] are presented in Table 3.

Table 3: Geometrical parameters

Parameters Values
Wavelength, L (mm)  2.664
Maximum tow thickness, h(mm) 0.059
Tow cross sectional area, A(mm?)  0.052

RUC’s tow geometry was created using the readily
available finite element pre-processor TexGen and ex-
ported into Abaqus/Standard finite element software
package for simulations. For the examined laminate,
a cubic Bezier spline towpath was selected with an in-
phase tow arrangement commensurate with previous
studies [12]

The tow cross section was approximated as a power
ellipse shape of n=0.5 (where n is an input parameter
of Texgen software) which is matching with micro-
graphs [2]. Eight-node linear brick elements with
reduced integration (C3D8R) were used for tows (Fig-
ure 3)
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Inter-connection between contact surfaces was
modelled with surface based cohesive constraints to
incorporate inter-tow slipping behaviour. ‘Surface-to-
surface’ discretization was used to minimize the large
penetration of slave nodes. Linear elastic traction sep-
aration was used to define cohesive behaviour with
traction stiffness values of 253,722 MPa/mm for nor-
mal mode and 90,561 MPa/mm for shearing and
tearing modes.

Boundary nodes were connected to multiple refer-
ence points created at the mid-plane of RUC using
‘MPC beam’ constraints. A Dummy node was created
per each pair of reference points at two boundaries
and related using ‘Equation constraints’ to apply de-
formations and to extract data. Periodic boundary
conditions were defined as stated in [2] to represent
the continuum nature of the composite.

Homogenized material response

ABD matrix constitutes the relationship between kine-
matic variables (mid-plane strains and curvatures)
and static variables (mid-plane force resultants and
moment resultants of the laminate).

Ny An A A B Bin B €x

Ny App Ay Ax B Bn By €y

Nyy _ At Az Aes Bis Ba Bes Exy (1)
My By Bz Big D D1z Dy Ky

My Bia By By D Dn D Ky
My Bis Bas Bes Dis Das Des Kxy

where N is the force per unit length, M is the
moment per unit length, € is the mid-plane strain, « is
the mid-plane curvature, [A] sub-matrix denotes the
extensional stiffness matrix, [B] sub-matrix denotes
the extension-bending coupling matrix, and [D] sub-
matrix denotes the bending stiffness matrix.

Six separate analyses were performed for each unit
deformation (i.e., €x =1,and €, = €xy = Ky = Ky = Kyy
= 0) by introducing strains and curvatures to the
RUC through dummy nodes and associated displace-
ments, rotations of the reference nodes and forces
and moments of the dummy nodes were extracted.
MATLAB code was used to construct the ABD matrix
following the principle of virtual work.

In order to calculate entities in the ABD matrix,
equalised the external work done by the given unit
deformation (as unit strain) and the internal work
done by the boundary nodes by multiplying forces
from the dummy nodes which are applied to the
boundary nodes (since those are connected by equa-
tion constraints) and the deformations of boundary
nodes.

For the first deformation mode, were applied unit
axial strain in the x direction. Hence, by the principle
of virtual work,

e AnALL =Y (Fau+ Fo + Fzw + Mfy+
BN

M,6, + M;6,) (2)

For linear analysis, all the used strain values were
in unit magnitude (ex = 1 ). The calculation was
extended for all entities of the ABD matrix using a
MATLAB code and the obtained matrix is presented
in Eq. 3.

8493 2195 O 0 0
2195 8493 0 0 0

ABD = 0 0 365 4.7 ©)
0 0 0 47 365
2 0O 0 0 0 18

Data generation

For model training and testing the required data
points are generated as follows. The weighted av-
erage tow properties given in Table 2 are better un-
derstood by the constituent properties in Table 1.
Hence, the Latin hypercube quasi-random sampling
of the input space is performed by considering a
£5% variation of all constituent material parameters
of each tow. For instance, a single data point in the
input space of the database is a 8 x 2 matrix where 8
refers to the eight tows in the RUC of the composite
and 2 refers to the two constituents; fibre and resin.
Thus, the applied variation will generate new mate-
rial properties, like in Table 1, and in turn change
the tow properties in Table 2. The variation factor for
fibre (cs) and resin (c/) is always distinct and further,
cs of each tow takes different values to maintain the
randomness of sampling. A single data point in the
input space takes the form;

The output for a single data point will be the ABD
stiffness matrix, which is generated after performing
multiscale modelling as described in the previous
sections of this paper. For model training, entries in
the B sub-matrix is not considered despite its small
values due to the non-symmetric material properties
of tows. Herein, the entries in A and D sub-matrices
are considered for model training, testing and predic-
tion phases of the data-driven models. In this work a

Table 4: Data points in the input space

Cf 0.998, 1.040, 1.031, 1.008,
0.966, 1.021, 0.959, 0.981

Cr 0.977, 0.997, 1.030, 1.047,
1.010, 0.966, 0.956, 1.022
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total of 967 data points are generated at a cost of 40
minutes per data point.

Data-driven prediction of ABD
parameters

Review of data-driven techniques

In this work, the implementation of machine learn-
ing algorithms has allowed for the prediction of ABD
parameters. In recent years, data-driven models have
gained increasing popularity. When integrated with
machine learning approaches, these models seem
to be more potent, and are able to predict without
having any prior understanding of the system and ca-
pable to attain higher accuracy. For this study, we use
a several well-known machine learning algorithms
and statistical methods for comparison pursposes.

Correlation

In a regression model, multicollinearity occurs when
two or more independent variables are highly corre-
lated with one another. As seen from the heatmap
in Figure 4, there are no two or more predictors that
are highly linearly related, so multicollinearity was
not an issue in this case, thus lower variable redun-
dancies.

Polynomial regression

Regression analysis is a statistical technique for de-
termining the relationship between various variables.
The use of regression analysis in machine learning
for prediction is currently a hot topic. The regres-
sion analysis is used to find out how the dependent
variable is changing when one independent variable
is changing, and other independent variables are re-
mained unchanged. Mostly it is used to determine
the average value of the dependent variable for fixed
independent variable values [13].

Linear regression (LR) is a statistical technique that
is used to model the relationship between the depen-
dent variable (also called the response) Y and one or
more independent variables (also called explanatory)
X. The regression function represents the function Y,
and it can be expressed by the equation:

Y:‘B(]—FIB1X+€ 4)

Where: Y is the dependent variable (response).
X is the independent variable (explanatory). Bg is
the y-intercept (the value of Y when X is 0). B is
the slope of the line (represents the change in Y for
a unit change in X). € represents the error term or
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Figure 4: Correlation matrix of variables

residual (the difference between the observed Y and
the predicted Y).

The input dataset contains y and x values, which
are used by linear regression to create a predictive
model, particularly for tasks like forecasting. The
trained model is expected to predict the value of
Y for a new x value. Linear regression is a widely
used technique for understanding and predicting
relationships between variables in various fields of
study. [13].

Neural networks

Artificial Neural Network (ANN) is a technology
which is developed to emulate a biological neural
network based on the studies on the human brain
and nervous system. The processing elements of the
human brain which are the neurons are connected
to each other. These neurons are arranged in a layer
where the output from one layer is given as input
to other layers. The neurons receive the input signal
from other neurons or external stimuli and process
them using a transfer or activation function. There
are many variants of ANN models. Amongst them,
the multi-layer perceptron (MLP) is the most influen-
tial for a study considered in this paper [14].

The MLP model has several layers of nodes where
the first layer acts as an input layer which receives
external information, and the last layer acts as the
output layer which produces the final output for the
problem. There will be one or more intermediate
layers between the input layer and the output layer.
These layers are called as hidden layers. There will
be acyclic arcs connecting the nodes of lower layer to
a higher layer [14].
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Repeated cross validation

The most recommended cross-validation method for
machine learning models of both classification and
regression is repeated K-fold. The repeated K-fold al-
gorithm’s main process involves repeatedly shuffling
and randomly sampling the data set, and it produces
a robust model by covering the most training and test-
ing processes. Two parameters are required for this
cross-validation procedure to function accordingly in
assessing the performance of a predictive model. The
given dataset (i.e. the total data volume including
training and testing data set) will be divided into
K folds according to the first argument, K, which
represents an integer value (or subsets). The model
is trained on the K-1 subsets of the K folds, and the
performance of the model will be tested on the re-
maining subset. (Repeated K-fold Cross Validation
in R Programming - GeeksforGeeks, 2022)

NRMSE

The Normalized Root Mean Squared Error (NRMSE)
is an error estimate, that enables users to compute the
error between estimated and observed values using
various normalizing techniques. The comparison of
predictions over models with various scales is made
easier by using a normalized RMSE. NRMSE takes

the form,
n
NRMSE = [ =} (yi—§)*/9 )
i=1
where

y; = Output form the data (training/testing)
7 = Output form the model (training/testing)
y

1 n
7 Li-1Yi

S| =

Results and discussion

Model training using polynomial fitting

As there are few parameters in the linear regres-
sion model, it was chosen with default parameters.
Scatter plot for actual vs prediction of linear re-
gression is shown in Figure 5. The best features
were chosen using GridSearchCV which belongs to
the model selection package of the sklearn library
(sklearn.model_selection.GridSearchCV,2022). Fitting
the estimator (model) to the given training set will
allow to iterate through specified hyper-parameters.
For better performance, all sixteen features in the
input space were chosen.

As observed in Table 5 and Table 6, D, and D1 ;
received low NRMSE scores, while A;; and Ajg
received high NRMSE score in comparison to other
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Figure 5: Scatter plot for actual vs prediction of linear regression

dependent variables. The variations between scores
in the train and test for same variables and difference
between each train score and corresponding test score
do not vary significantly. This indicates that the
model has not over-fitted.

Model fitting using ANNs

The resulted architecture ANN model is shown in
Figure 6. It consists of one input layer, two hidden
layers and one output layer. More hidden layers were
also explored, but the model’s performance did not
improve yet the complexity of the architecture. As a
result, the proposed simple architecture was chosen
since it produced superior error estimates.

As seen in the Table 8 and Table 9, compared to
the scores of linear regression, D6,6, Ay and A
only received low NRMSE scores and unlike linear
regression, D ; received a higher NRMSE score com-
pared to other dependent variables, although it is
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Table 5: NRMSE score of the train dataset (repeated cross validation)

Fold Al1l

Al2

A22

A66

D11 D12 D22 D66

O 0N ONUT = WN — O

7.0E-04
6.9E-04
6.9E-04
7.1E-04
7.1E-04
7.1E-04
6.9E-04
6.9E-04
7.0E-04
7.0E-04

2.5E-03
2.6E-03
2.5E-03
2.5E-03
2.6E-03
2.6E-03
2.5E-03
2.6E-03
2.5E-03
2.5E-03

6.9E-04
7.1E-04
7.0E-04
7.1E-04
7.1E-04
7.1E-04
7.0E-04
7.1E-04
7.0E-04
7.0E-04

1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03
1.5E-03

9.0E-05 29E-04 8.7E-05 6.6E-04
9.1E-05 29E-04 8.5E-05 6.4E-04
8.7E-05 2.8E-04 8.7E-05 6.7E-04
89E-05 29E-04 85E-05 6.9E-04
9.0E-05 29E-04 8.5E-05 6.7E-04
84E-05 3.0E-04 8.4E-05 6.5E-04
9.0E-05 28E-04 8.7E-05 6.6E-04
9.0E-05 29E-04 8.6E-05 6.8E-04
9.1E-05 29E-04 8.6E-05 6.8E-04
9.1E-05 29E-04 8.6E-05 6.6E-04

Table 6: NRMSE score of the test dataset (repeated cross validation)

Fold

All

Al2

A22

A66

D11 D12 D22 D66

O 0NN UGl WDN PO

7.1E-04
7.7E-04
7.5E-04
6.8E-04
6.7E-04
6.7E-04
7.5E-04
7.4E-04
7.1E-04
7.2E-04

2.8E-03
2.5E-03
2.6E-03
2.6E-03
2.5E-03
2.5E-03
2.6E-03
2.6E-03
2.7E-03
2.7E-03

7.7E-04
7.0E-04
7.3E-04
7.2E-04
6.9E-04
6.9E-04
7.2E-04
7.1E-04
7.5E-04
7.4E-04

1.6E-03
1.6E-03
1.6E-03
1.4E-03
1.5E-03
1.5E-03
1.4E-03
1.5E-03
1.6E-03
1.6E-03

9.0E-05 3.1E-04 8.2E-05 7.1E-04
84E-05 29E-04 9.3E-05 7.8E-04
1.0E-04 3.1E-04 84E-05 6.7E-04
94E-05 28E-04 9.2E-05 6.1E-04
8.8E-05 29E-04 9.1E-05 6.8E-04
1.1E-04 2.6E-04 9.5E-05 7.4E-04
8.8E-05 3.2E-04 8.3E-05 7.0E-04
8.8E-05 2.8E-04 8.8E-05 6.3E-04
8.6E-05 3.1E-04 8.8E-05 6.2E-04
8.6E-05 3.0E-04 8.7E-05 7.1E-04

Inpat Units: 16 (+6 more) @
Activation: relu W,

22

Units: 20 (+10 more)
Activation: relu

Units: 20 {(+10 more)
Activation: relu
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Figure 6: Model architecture of ANN

Table 7: ANN model summary

Layer

Type

Number of
neurons

Input

Input Layer

16

Hidden

Dense

20

Hidden

Dense

20

Output

Dense

8

Journal of S

still lower than the score obtained in linear regres-
sion. The variations between scores in the train and
test for same variable are high compared to results of
linear regression. This reveals that linear regression
provides consistent results for each K-split.

Result comparison

The dataset was scaled using a standard scaler since
it is recommended for the better performance of data-
driven methods. Without scaling features, the same
algorithms may be biased towards the features with
higher magnitudes. It is also mentioned that pre-
diction values were descaled to actual scale before
calculating NRMSE values [4].

According to the overall mean shown in Table 10
and Table 11, the results of both train and particu-
larly test data sets revealed that the linear regression
(0.00084) performed better than ANN (0.00110). The
test results for Ay 1, Az2, D11, D12, and Dy in linear
regression shows significant improvement compared
to those for ANNs. Conversely, for Aj,, Age and
Dg 6, the test results of ANN are marginally supe-
rior to those of linear regression. These findings
demonstrate that linear regression (LR) outperforms
Artificial Neural Networks (ANNSs) for Aj1, Azp,
D11, D1y, and D,5. The superiority of LR can be
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Table 8: NRMSE score of the train dataset (repeated cross validation)

Fold A1l Al2 A22 A66

D11 D12 D22 D66

8.8E-04
8.6E-04
8.8E-04
9.6E-04
9.2E-04
9.5E-04
9.3E-04
8.6E-04
8.7E-04
9.7E-04

2.2E-03
2.2E-03
2.2E-03
2.3E-03
2.3E-03
2.2E-03
2.3E-03
2.3E-03
2.2E-03
2.2E-03

9.0E-04
8.9E-04
9.4E-04
8.2E-04
1.0E-03
9.1E-04
1.0E-03
9.3E-04
8.8E-04
9.9E-04

1.3E-03
1.3E-03
1.2E-03
1.2E-03
1.1E-03
1.3E-03
1.1E-03
1.2E-03
1.2E-03
1.1E-03

O 0N ONUT = WN — O

7.9E-04
7.5E-04
8.5E-04
8.4E-04
7.7E-04
7.9E-04
7.3E-04
7.1E-04
6.8E-04
8.2E-04

3.4E-04
3.0E-04
3.2E-04
3.4E-04
3.5E-04
3.3E-04
3.6E-04
3.0E-04
3.3E-04
3.6E-04

7.0E-04
7.4E-04
7.9E-04
6.3E-04
7.7E-04
8.0E-04
7.5E-04
6.6E-04
6.9E-04
7.6E-04

44E-04
4.4E-04
4.2E-04
4.3E-04
4.6E-04
4.4E-04
4.3E-04
4.5E-04
4.5E-04
4.5E-04

Table 9: NRMSE score of the test dataset (repeated cross validation)

Fold A1l Al2 A22 A66

D11 D12 D22 D66

8.9E-04
1.0E-03
1.1E-03
1.1E-03
1.0E-03
9.7E-04
1.1E-03
9.8E-04
9.6E-04
1.0E-03

2.8E-03
2.5E-03
2.7E-03
2.5E-03
2.5E-03
2.5E-03
2.6E-03
2.6E-03
2.7E-03
2.6E-03

9.4E-04
1.1E-03
1.0E-03
9.8E-04
9.6E-04
9.8E-04
1.1E-03
9.8E-04
1.1E-03
1.1E-03

1.5E-03
1.5E-03
1.6E-03
1.3E-03
1.4E-03
1.4E-03
1.3E-03
1.5E-03
1.5E-03
1.4E-03

O 0NN Ul WN -~ O

7.8E-04
8.3E-04
1.1E-03
1.1E-03
8.7E-04
7.6E-04
8.6E-04
7.0E-04
7.8E-04
8.8E-04

3.4E-04
3.7E-04
4.3E-04
4.2E-04
4.3E-04
4.0E-04
4.3E-04
3.5E-04
4.1E-04
3.9E-04

7.1E-04
8.4E-04
9.0E-04
7.7E-04
9.8E-04
9.0E-04
8.4E-04
7.5E-04
8.2E-04
7.9E-04

5.1E-04
5.4E-04
4.9E-04
5.3E-04
5.1E-04
5.5E-04
6.5E-04
4.9E-04
5.1E-04
4.7E-04

Table 10: Overall Train mean NRMSE score for Each target

All Al2 A22 A66 D

11 D12 D22 D66 Mean

ANN
LR

9.1E-04
7.0E-04

2.2E-03 9.3E-04
2.5E-03 7.0E-04

1.2E-03 7.
1.5E-03 8.

7E-04 3.3E-04 7.3E-04
9E-05 29E-04 8.6E-05

4.4E-04
6.7E-04

9.4E-04
8.2E-04

Table 11: Overall Test mean NRMSE score for Each target

All Al2 A22 A66 D

11 D12 D22 D66 Mean

ANN
LR

1.0E-03
7.2E-04

2.6E-03 1.0E-03
2.6E-03 7.2E-04

1.4E-03
1.5E-03

8.

9.2E-05 3.0E-04 8.8E-05

6E-04 4.0E-04 8.3E-04 52E-04

6.9E-04

1.1E-03
8.4E-04

attributed to its suitability for datasets with linear
relationships, its simplicity, and better generalization
on smaller datasets. Additionally, LR’s interpretabil-
ity provides valuable insights, while ANNs may lack
transparency due to their complexity. Overall, lin-
ear regression dominates here with mean test score
0.00084 (< 0.00110).

Other well-known machine learning models were
also tested including tree-based models such as Sup-
port Vector Regression, Random Forrest and XGBoost.
However, they did not outperform linear or ANN
models and hence are not presented in this paper. In
both model training and testing stages, linear regres-
sion outperformed the ANN models. According to

Journal of Sustainable Civil and Environmental Engineering Practices (2023)

the overall mean linear regression performed better
than ANNS.

Conclusions

In this paper, the importance of constructing predic-
tive models to predict the homogenized response of
carbon fibre composites is explored. The uncertain-
ties of material parameters at the microscale are prop-
agated to the macroscale via multiscale modelling
and subsequently used to train the predictive mod-
els. In this work, both linear regression and ANNs
are explored in the presence of a relatively smaller
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dataset. Overall, the linear regression model pre-
dicted the material parameter variations better than
the ANNs. Though this observation is unexpected
in a general context (due to the proven performance
of ANNSs) the smaller number of data points (967) in
the database has led to the superior performance of
linear regression models over ANNSs. It is concluded
that the ABD material parameters are well captured
by linear regression models, where NRMSE values
of predictions are well below 0.00084.
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