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Abstract

The aggregate properties such as aggregate size distribution and aggregate shape distribution, affect the mechanical
performance of concrete. Although shape of aggregates are computed using various computational methods in researches, it
was not clear, which of them define the shape of an aggregate as a whole. This study aims to investigate the shape factors
(two-dimensional) in defining the shape of an aggregate. Aggregates of size between 5 – 30 mm diameter were obtained from
different batches of aggregate samples that underwent treatment of varied degrees of revolutions in LAAV. Fourteen different
shape factors were quantified using image analysis techniques and were tested for ANOVA, regression, principal components
and correlation analyses. No shape factor defined the shape of an aggregate individually, while several shape factors were
highly correlated. A combination of at least three shape factors is required to define the shape of an aggregate numerically.
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Introduction

The composition and characteristics of coarse aggre-
gates play a pivotal role in shaping the properties of
concrete, yielding both quantity and quality aspects
that define the performance of the resulting material.
However, the extraction process of aggregates exacts
an environmental disturbance due to the depletion
of non-renewable resources and the geographical im-
plications of extraction [1]. Current challenge is the
economic sustainability of this industry, prompting
explorations into alternative materials as part of con-
temporary research endeavors. The optimization of
aggregate utilization through concrete mix design,
with a focus on enhancing efficiency and reducing re-
quired cement paste – termed packing optimization
– has been a dominant pursuit [2]. In this objective,
packing density emerges as a pivotal determinant of
material strength, urging engineers to optimize it.

While the distribution of aggregate sizes is a signifi-
cant influence on packing within a concrete mold, the
role of aggregate shape and its distribution cannot
be understated [3]. Yet, despite the development of
packing models for mono-size and binary-size parti-
cles, the packing involving size distributions remains
largely unexplored. As the influence of aggregate
size distribution on aggregate packing is established,
the additional impact of aggregate shape further com-
plicates the packing density landscape.

Incorporating aggregate shape quantitatively into
packing models necessitates assigning a numerical
value to aggregate shape. Although computational
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methods to define aggregate shape have been de-
ployed in various contexts, the comprehensive char-
acterization of these shape factors and their effective-
ness in predicting material performance has not been
sufficiently addressed. Notably, a range of studies
have focused on the definition of aggregate shape
through computational methods, including the con-
text of powder technology [4] and geotechnical engi-
neering applications [5].

However, certain gaps remain in understanding
how these shape factors correlate with particle size
distributions and how they contribute to aggregate
packing density. Historically, the early 1930s saw
initial attempts to incorporate shape factors along-
side aggregate size to define packing density[6, 7].
Notably, the majority of studies have concentrated
on specific particle mixtures, with a focus on mono-
sized and binary particle mixtures[8, 9]. Addition-
ally, while technological advancements have enabled
shape factor analysis through Digital Image Process-
ing (DIP) techniques, challenges remain in effectively
integrating three-dimensional data into the analy-
sis[10].

This study sets out to address these knowledge
gaps and contribute to the existing body of research.
Specifically, the research objectives driving this inves-
tigation are: available shape factors identified in pre-
vious literature, variation of different shape factors
based on the particle size distribution, identification
of the interrelation between shape factors and revo-
lutions. Through a meticulous exploration of these
research questions, this study aims to unravel the
intricate relationship between aggregate shape, pack-
ing density, and material performance. By exploring
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into this uncharted territory, this research seeks to
illuminate insights and pave the way for more in-
formed decision-making in concrete mix design and
application.

Shape is external morphology of particles that can
visually be observed while experimental and numeri-
cal depiction of shape is vital in model development.
While several computational methods were used to
define the shape of aggregates in different contexts,
studies have not characterized these shape factors
and identifying the efficacy of the numerical value in
predicting the performances of resulting packed ma-
terials. This study aims to identify and characterise
shape factors, available in literature, specifically in
the context of aggregates in the range of 5 − 25 mm
diameter.

Materials and Methods

In this study, crushed aggregates were used as raw
material and they were obtained from local quarry
in Northern Province, Sri Lanka. The particle sizes
of aggregates used in this study ranged between1/2”
(12 mm) to 1” (25 mm). Another sample of aggre-
gates (bigger than 12 mm) were obtained from ag-
gregate pool and were separated into nine batches.
Based on the principal of abrasion, when aggre-
gate particles undergo abrasion, the smoothness
and shape of particles change significantly. With
the intention of producing aggregates of same size,
but with different shapes, each batch of aggregates
were then processed in LAA (Los Angeles Abra-
sion) machine (ball milling) for different amount
of revolutions, ranging from 50 to 2000 revolutions
(50, 100, 150, 200, 400, 500, 1000, 1500 and 2000). After
2000 revolutions the whole sample was recognized
as almost dust, no coarser particles were identified.
Each batch of samples (nine) were then sieved with
25 mm and then 12 mm sieves and particles sizes
between 12 − 25 mm diameter were selected. The
samples were then washed in tap water and left to
dry in air for 24 hours. Two batches of aggregates that
had zero and 1000 revolutions treatment in LAAV
are shown in Figure 1.

Specific amount of coarse aggregate samples was
taken and coloured in black paint. They were then
allowed to dry in room temperature. After drying,
those particles were spread on a white sheet with
A4 area on the special arrangement. An image of
arranged sample was taken by covering completely
white sheet. Arranged particles were mixed together,
rearranged on the sheet and images were taken again.
This procedure was repeated 12 times and 12 differ-
ent images were obtained.

Particle size distributions of the aggregates, which

Figure 1: Batch of aggregates that were (a) not treated and (b)
treated in LAAV (1000 revolutions)

were used in this study, were determined by image
analysis method. The analysis was performed us-
ing ImageJ, an open-source software designed for
processing and analyzing scientific images. To begin,
the images were cropped against a white background
and subsequently converted into a binary scale (black
and white) within the software. This step followed
the appropriate image scaling. The binary images
were then subjected to processing, resulting in the
isolation of black zones representative of the aggre-
gate surface area. The diameters of these white zones
were measured, and corresponding boundaries was
generated.

This approach enabled the determination of cu-
mulative aggregate percentages, which, in turn, fa-
cilitated the creation of a particle size distribution
curve. Furthermore, to enhance the accuracy of anal-
ysis, we referred to established shape factors outlined
in the existing literature. These shape factors were
meticulously computed for the aggregates under in-
vestigation, as outlined in Table 1. The dimensional
parameters integral to the calculation of these shape
factors are detailed below.

Bounding rectangle is the smallest rectangle enclos-
ing the selection. This dimension called as breadth
and height in ImageJ as shown in Figure 2 (a).

Fit Ellipse is known as the best fitting ellipse for
this area. For this method, primary axis and sec-
ondary axis lengths were need, which are shown as
Minor and Major in ImageJ as shown in Figur 2 (b).

There are two Feret’s dimensions. It measures the
size of an area along a specified direction as shown
in Figure 2 (c). Feret is the longest distance between
any two points of the section boundary. (Maximum
Caliper) MinFeret is the smallest distance between
any two points of the section boundary. (Minimum
Caliper)

The other raw data were analyzed by using Mi-
crosoft Excel 2019 and shape factor values were
also obtained from Microsoft Excel 2016 using the
equations and dimensions given above. The varia-
tions were visually analysed using graphical analyses
while statistical analyses were carried out using SPSS
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Table 1: Descriptions of shape factors used in this study

Shape Factor Computation Shape Factor Computation

J.C ImageJ circularity (4π area)
(perimeter)2 SF.FR Sneed and Folk flatness ratio Breadth

Length

J.AR ImageJ aspect ratio majoraxis
minoraxis FAR Feret’s aspect ratio Feret

MinFeret

J.R ImageJ roundness 4π area
π×(majoraxis)2 SF Shape factor Perimeter

Calculatedperimeter

J.S ImageJ solidity area
convexarea PSC Projected sphericity/circularity D.Calculated

Feret

KS Krumbein sphericity 3
√

breadth
length ICS Inscribed circle sphericity

√
MinFeret

Feret

BSF Barksdale et al. shape factor length
(breadth)2 C Circularity (perimeter)2

area

FR Kwan and Mora fullness ratio
√

area
convexarea PS Projected sphericity area

AC

Figure 2: (a) Length and breadth of aggregate particle (b) Major
and minor axes of an aggregate particle (c) Feret dimensions of
an aggregate

and MiniTab 2019. Thereafter, the relationship in
between shape factors and the relationship between
particles size distribution and shape factors were ob-
tained. Finally, cluster analysis was carried out based
on the similarity between shape factors and the shape
factors that best represented the shape of aggregates
were presented.

Aggregates for the experiment purchased as a sin-
gle batch. Aggregates were colored by maintaining
the thin layer. Because the shape of the aggregate
holds significance in the analysis, it is imperative to
ensure that the aggregate’s shape remains unchanged
throughout the process. The images of the aggregates
were taken from the top. The aperture was set of
f /9.0 to decrease the blur effect and ISO and shut-
ter speed were set 800 and 1/250 s throughout the
imaging process. To maintain constant image quality,
a special setup is used. The camera was fixed in the
top and the images were taken from the constant

Figure 3: Special setup used for image capturing and Digital
Image processing (Binary Result)

height and centre. Special setup used for image cap-
turing and Digital Image processing (Binary Result)
is shown in Figure 3

Results and Discussion

Particle Size Distribution and Shape
Factors

The particle size range and distribution of all samples
used in this study had a consistent range and distribu-
tion, as shown in Figure 4. The particle sizes varied
between 5 mm and 30 mm, with a D50 of approxi-
mately 18 mm. The consistency of this observation
across all samples ensured that the size imparted no
variation on the analyses on the shape of aggregates.

As discussed in the methodology, the shape factors
were computed from the images of the aggregates.
Analysis of Variance (ANOVA) was conducted on
each shape factor to understand if aggregates with
different treatments in LAAV had clustered. Figure 5
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Figure 4: Particle size distribution of aggregates with (a) zero
revolutions, (b) 50 - 400 revolutions and (c) 500 - 2000 revolu-
tions

shows the clusters as identified from ANOVA test
(the classes that had significant difference based on
the number of revolutions), individually done for
ten shape factors. It is evident from the figure that
shape factors had significantly different measures of
the shape of aggregates. The shape factors J.S, FR,
SF.FR, ICS and PS have no patterned grouping from
the ANOVA test. Feret diameters encountered shape
factors and convex area encountered shape factors
have no patterned grouping. Even though, other
Bounding rectangle property involves for Krumbein
Sphericity, Barksdale Shape factor etc. have a group-
ing pattern, Flatness ratio have no identical grouping
pattern.

The results obtained from Figure 6 demonstrate
that the utilization of bounding Rectangle, fit ellipse,
or Feret property methods induce impact in shape
factor properties. Although the shape factors identify
significant difference between batches of aggregates,
some have a higher degree of distinguishability com-
pared to other shape factors. Certain shape factors,
such as FAR, SF, and C, exhibit greater distinguisha-
bility at lower revolutions, while other shape factors
like BSF and SF demonstrate enhanced distinguisha-

Table 2: Summary of variance explained by three principal
components

Component % of variance Cumulative
1 49.2 49.2
2 29.3 78.5
3 11.7 90.2

bility at higher revolutions.
Lower revolutions predominantly smoothens the

surface of the aggregates due to abrasion, rather
than effecting significant changes in the macro struc-
ture of the aggregate, while higher revolutions affect
the macro-shape of the aggregate. Therefore, shape
factors indicate measurements of different scales of
shape. Further analyses are required to understand
the combinations of shape factors that can define the
shape of an aggregate emphatically.

From Figure 6 shows the shape factors have same
mean trend and revolutions of LAAV. In the observed
data, it’s apparent that certain shape factors exhib-
ited changes with revolutions (alterations in aggre-
gate shape), whereas several other shape factors re-
mained relatively stable. Clearly, FAR, J.AR, SF, and
C displayed negative correlations with revolutions,
whereas all other shape factors displayed positive
correlations. In addition to the trends, the figure also
shows that there are few shape factors behave very
similar to a few other factors. Further analyses on
similarity is required to identify the similar shape
factors.

Figure 7 illustrates the similarity of shape factors
through the clustering of aggregates using the labeled
classes. J.AR, FAR, SF, C and BSF a closely related
compared to other shape factors, as evident from the
figure. Furthermore, it is evident that several shape
factors are very similar, for example J.S and FR, J.R
and ICS, PSC and PS, J.AR and FAR and SF and C.
Without using these clusters, the predictive analysis
conducted in Minitab. Through this predictive anal-
ysis, it becomes possible to forecast the area of the
aggregate, with an optimal correlation coefficient (R)
value of 0.9809.

The data matrix of 14 dimensions (14 shape factors)
could be reduced in dimensionality using a Principal
Component Analysis (PCA). A PCA revealed that the
variance of the data matrix could be explained with
3 principal components )approximately 90% of the
variance explained). Table 2 shows the percentage of
variance explained by each principal component and
the cumulative percentage of the first three principal
components.

While the first principal component (PC) explains
almost half the variance, the second PC explains
another 30%. That is, the first two PCs explain 70%
of the variance of the complete data matrix.
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Table 3: Summary of principal components rotated around
varimax

Shape Factor
Principal Component

1 2 3

J.C 0.52 0.79 0.22
J.AR -0.93 -0.24 -0.06
J.R 0.94 0.20 0.03
J.S 0.04 0.92 -0.27
KS 0.56 -0.05 0.71
BSF -0.32 -0.06 0.90
FR 0.04 0.92 -0.26
SF.FR 0.81 0.01 0.13
FAR -0.94 -0.24 -0.06
SF -0.50 -0.79 -0.24
PSC 0.88 0.40 0.00
ICS 0.95 0.22 0.04
C -0.49 -0.78 -0.25
PS 0.87 0.40 0.00

Table 3 shows the summary of shape factors with
respect to the first three PCs obtained from the PCA.
It could be observed that the first PC is dominated by
J.AR, J.R, SF.FR, FAR, PSC, ICS and PS. This means
that these shape factors are closely related to each
other in explaining the variance of the data matrix.
The second PC is dominated by J.C, J.S, FR, SF and
C, indicating a close correlation between them. The
third PC is dominated by the remaining shape factors,
KS and BSF, which explained 11% of the variance in
the data matrix.

It is required to do a correlational analysis on shape
factors to understand the correlation between them.
A bivariate Pearson’s correlation analysis is done
and Table 4 shows the summary of correlation anal-
ysis. Cells highlighted in green show very high cor-
relation coefficient (greater than 0.9) while the cells
highlighted in red show insignificant correlation (less

than 0.5). High correlation observed between J.S-FR,
C-SF, PS-PSC, J.AR-FAR, J.R-ICS, ICS-PSC, PS-ICS,
J.R-PSC and J.R-PS. These observations are quite sim-
ilar to the observations in similarity analysis shown
in Figure 7.

Pearson’s correlation assumes a linear correlation.
A lower value in correlation coefficient in Pearon’s
test does not imply no correlation at all, where as a
non-linear correlation may be present. It is therefore
important to analyse shape factors with non-linear
models to understand the similarity and correlations
between the shape factors.

Conclusion

This study analyses the shape of aggregates with
regards to the shape factors Fourteen methods used
in the literature to numerically represent the shape
of an aggregate has been investigated in this study.
Aggreegates were processed in LAAV instrument for
different number of revolutions to effect changes in
the shape of the aggregates, and the shapes of which
were analysed using image analysis techniques. The
following conclusions were made.

1. The ANOVA test grouped sample batches based
on significant differences among shape factors.
While J.S, FR, SF.FR, ICS, and PS showed no
significant grouping, others did. However, no
group identified all ten batches as significantly
different. J.C, K.S, SF, and C grouped batches
into seven categories, while FAR, PSC, and PS
formed six.

2. Although four and three shape factors had
grouped batches of samples into seven and six
groups, respectively, the grouping of batches
were not similar. It was evident that each shape
factor was measuring different aspect of the
shape of aggregate.

Figure 5: Clusters as identified from ANOVA test, with ten different shape factor
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Figure 6: Variation in mean of shape factors with revolutions

Figure 7: Similarity of shape factors based on the cluster analysis on the aggregate shapes with labelled classes
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Table 4: Summary of correlation coefficientcs (Pearson’s Correlation) between shape factors

J.C J.AR J.R J.S KS BSF FR SF.FR FAR SF PSC ICS C PS
J.C -0.67 0.63 0.65 0.39 -0.06 0.65 0.43 -0.67 -0.99 0.76 0.66 -0.98 0.75
J.AR -0.67 -0.96 -0.26 -0.49 0.22 -0.26 -0.65 0.98 0.66 -0.90 -0.96 0.65 -0.89
J.R 0.63 -0.96 0.24 0.49 -0.23 0.24 0.68 -0.94 -0.61 0.91 0.97 -0.59 0.91
J.S 0.65 -0.26 0.24 -0.14 -0.27 1.00 0.11 -0.25 -0.62 0.41 0.25 -0.61 0.41
KS 0.39 -0.49 0.49 -0.14 0.41 -0.14 0.56 -0.49 -0.39 0.43 0.49 -0.38 0.42
BSF -0.06 0.22 -0.23 -0.27 0.41 -0.26 -0.48 0.22 0.06 -0.26 0.23 0.05 -0.26
FR 0.65 -0.26 0.24 1.00 -0.14 -0.26 0.11 -0.25 -0.62 0.41 0.25 -0.61 0.41
SF.FR 0.43 -0.65 0.68 0.11 0.65 -0.48 0.11 -0.65 -0.41 0.64 0.68 -0.40 0.64
FAR -0.67 0.98 -0.94 -0.25 -0.49 0.22 -0.25 -0.65 0.66 -0.92 -0.98 0.65 -0.90
SF -0.99 0.66 -0.61 -0.62 -0.39 0.06 -0.62 -0.41 0.66 -0.73 -0.64 1.00 -0.72
PSC 0.76 -0.90 0.91 0.41 0.43 -0.26 0.41 0.64 -0.92 -0.73 0.94 -0.71 1.00
ICS 0.66 -0.96 0.97 0.25 0.49 -0.23 0.25 0.68 -0.98 -0.64 0.94 -0.62 0.93
C -0.98 0.65 -0.54 -0.61 -0.38 0.05 -0.61 -0.40 0.65 1.00 -0.71 -0.62 -0.70
PS 0.75 -0.89 0.91 0.41 0.42 -0.26 0.41 0.64 -0.90 -0.72 1.00 0.93 -0.70

3. Most shape factors had small variations with
number of revolutions, while J.AR and C showed
higher degree of variations.In addition, other
than J.AR and FAR and SF that showed decreas-
ing trend with number of revolutions, all others
had increasing trend.

4. Principal Component Analysis (PCA) was em-
ployed on a fourteen-dimensional matrix of
shape factors. Remarkably, this matrix could
be effectively compressed into three principal
components, collectively accounting for 90% of
the data’s variance. The primary component,
responsible for 50% of the variance, prominently
featured J.AR, J.R, FAR, and ICS. Meanwhile,
the secondary component, explaining 30% of the
variance, was largely influenced by J.S and F.R.

5. A correlation analysis revealed significant cor-
relation among some shape factors. Very high
correlations (more than a correlation coefficient
of 0.9 with 95% confidence) was observed be-
tween J.S-FR, SF-C, PSC-PS, J.AR-FAR, J.R-ICS,
J.R-PSC and J.R-PS.

The findings underscore that a single shape factor
is insufficient to comprehensively characterize the
form of an aggregate. Moreover, not all fourteen
shape factors are indispensable, given the presence
of substantial correlations among some. It can be in-
ferred that a minimum of three distinct shape factors
might be necessary to adequately define the shape
attributes of an aggregate.
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