

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 1 Examination in Engineering: December 2023

Module Number: IS1402 (C-18)

Module Name: Mathematical Fundamentals for Engineers

[Three hours]

[Answer all questions, each question carries twelve marks]

Q1 a) If both the product and summation of two complex numbers, denoted as z and w, are real, show that either both z and w are real numbers or they are complex conjugates of one another.

[1 Mark]

- b) i.) If z = x + iy is a non-zero complex number, where x and y are real numbers, using an Argand diagram, explain what is meant by the modulus, argument, and the principal argument of z.
 - ii.) Find the modulus and argument of

$$z = \frac{5 + \sqrt{3}i}{2 - \sqrt{3}i}$$

[3 Marks]

- c) i.) State the De Moivre's theorem for fractional powers of the type $^1/p$, where $p \in \mathbb{N}$.
 - ii.) Show that summation of all the n^{th} roots of unity is 0.

Hence, show that

$$\cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \dots + \cos\left(\frac{2(n-1)\pi}{n}\right) = -1$$

[4 Marks]

d) i) Use De Moivre's theorem to express $\sin^5 \theta$ in terms of sines of multiples of θ .

Hence, evaluate

$$\int_0^{\frac{\pi}{2}} \sin^5 \theta \cos^2 \theta d\theta$$

[4 Marks]

- Q2 a) Briefly explain the following matrices by giving a non-trivial example for each.
 - i.) Upper triangular matrix
 - ii.) Skew-symmetric matrix
 - iii.) Orthogonal matrix
 - iv.) Idempotent matrix

[4 Marks]

b) Use elementary transformation method to evaluate the inverse of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & -2 \\ 1 & 2 & -1 \end{bmatrix}.$$

Hence, solve the system

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & -2 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x & u \\ y & v \\ z & w \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ -3 & 1 \\ -3 & 6 \end{bmatrix}.$$

[4 Marks]

- c) i.) Define an Augmented matrix.
 - ii.) What is it meant by a system of linear equations is consistent?
 - iii.) Find the values of α and β such that the system given below system is inconsistent.

$$x + 2y - z = 3$$

$$x - 2y + 2z = \alpha$$

$$2x + \beta y + z = 2$$

[4 Marks]

- Q3 a) i.) Explain what is meant by a function 'f is one to one'.
 - ii.) Show that, if f and g are one to one, so is $f \circ g$.

[2 Marks]

- b) State whether the following functions are continuous at x = 0. Explain your answer.
 - i.) f(x) = [x]

ii.)
$$f(x) = \begin{cases} (1+2x)^{\frac{1}{x}} ; & x \neq 0 \\ e^2 & ; x = 0 \end{cases}$$
 (Hint: $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$)

iii.)
$$f(x) = \begin{cases} 1; & x \neq 0 \\ -1; & x = 0 \end{cases}$$

iv.)
$$f(x) = \frac{2e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 2}$$

[6 Marks]

c) Evaluate the following limits

i.)
$$\lim_{x \to 0} \frac{\cos 2x - 1}{x \tan x}$$

ii.)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos 3x - \cos 5x}{\cos 3x + \cos 5x}$$

[2 Marks]

d) Sketch the graph of y = 2|x - 1| - |x - 2| + |2x + 1|

[2 Marks]

- Q4 a) i.) State the Rolle's theorem
 - ii.) State the Mean Value theorem
 - iii.) If f and g are continuous on [a,b], differentiable, and $g'(x) \neq 0$ on (a,b), show that there exist $c \in (a,b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

iv) Hence, show that for $\frac{1}{2} < a < b < 2$, there exist $c \in (a, b)$ such that

$$\frac{b-a}{2} < \ln(b) - \ln(a) < 2(b-a)$$

Deduce that,

$$\frac{1}{4} < \ln(1.5) < 1$$

[6 Marks]

- b) i) State and prove the Euler's theorem on homogeneous functions
 - ii) Let $u = \ln\left(\frac{x^4 y^4}{x + y}\right)$

Show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3$$

[4 Marks]

c) Write down the power series expansion of $f(x) = \sin x - \ln(x+1)$ about x = 0.

[2 Marks]

- Q5 a) i) Briefly explain what is meant by 'position vector' and 'unit vector'.
 - ii.) If $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, write down the modulus of \mathbf{r} in terms of x, y and z.
 - iii) Find the modulus of the vector $2\mathbf{i} \mathbf{j} + 3\mathbf{k}$.

[3 Marks]

- b) Let the position vectors of three points A, B and C are, a = 2i j 4k, b = -i + 2j + 2k, and c = 3i 2j 6k respectively.
 - i.) Determine whether the points A, B and C are collinear or not.
 - ii.) Find the unit normal vector to a and c.
 - iii.) Compute $\mathbf{b} \cdot \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.

[4 Marks]

c) i) If the position vector of any arbitrary point (x, y, z) is denoted by $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $|\mathbf{r}| = r$, show that

$$\nabla \left(\frac{\mathbf{r}}{r^2}\right) = \frac{1}{r^2}$$

- ii.) Find the directional derivative of $\emptyset = x^2y xz^2$ in the direction of $\mathbf{a} = 2\mathbf{i} + \mathbf{j} 3\mathbf{k}$ at the point (1, -1, -1).
- iii.) Evaluate $\nabla \cdot (\nabla \times \mathbf{A})$, where $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$.

[5 Marks]