University of Ruhuna

Bachelor of Science General Degree Level I (semester I) Examination – June 2015

Subject: Mathematics

Course Unit: AMT112B/MMA1113

(Mathematical Foundation of Computer Science)

Time: Two (02) hours

Answer <u>04 questions</u> only

- (1) (a) Prove that, if n is an integer and 3n+4 is even, then n is even using
 - (i) direct proof
 - (ii) contrapositive proof
 - (iii) proof by contradiction.
 - (b) State the Generalized Pigeonhole principle.
 - (i) 5 computers on a network are connected to at least 1 other computer. Show there are at least two computers that are have the same number of connections.
 - (ii) Consider 5 distinct points (x_i, y_i) with integer values, where i = 1, 2, 3, 4, 5. Show that the midpoint of at least one pair of these five points also has integer coordinates.
 - (c) State the inverse, converse and the contrapositive of the statement: "If I do well in this examination, then I will have a good average".
 - (d) Symbolize and test the following argument for validity by using a truth table.

If you send me a message, then I will come to the welcome party. If you do not send me a message then I will go to see a film. Therefore I will come to the welcome party or I will go to see a film.

(2) (a) Explain what is meant by saying an argument is valid.

Test for the validity of the following argument using pattern proof:

If I join the picnic I can get a better knowledge about the wild-life. If I don't join the picnic I will go for fishing. If I get a better knowledge about the wild life, I will write a book about wild-animals. Therefore if I do not go for fishing, I will write a book about wild-animals.

(b) Consider the following sentences:

All students are sporty.

Anyone who is sporty and determined will perform well in the tournament.

Anyone who performs well will win in his/her event.

Sugath is a determined student.

Represent the above facts in axiom forms. (i)

Translate the above axioms into clausal form. (ii)

- Use these clausal forms to prove that "Sugath will win his event.". (iii)
- (3) (a) Explain what is meant by a tautology and a contradiction. Using the truth tables, check whether the followings are tautologies, contradictions or neither:

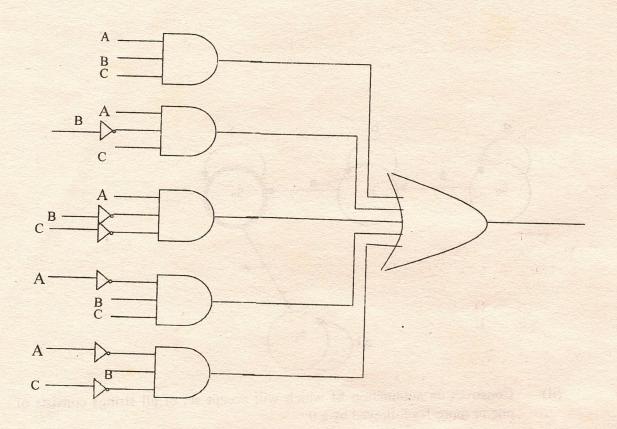
(i)

- $(P \land P \rightarrow Q) \rightarrow Q,$ $[(P \lor Q) \land (\sim Q \lor R)] \rightarrow \sim P$ (ii)
- (b) A computer has a word length of 8 bits and uses two's complement method for calculations. Translate -73 into the number format used by the above computer.
- (c) Explain the method of simplifying 49 59 using two's complements in an 8-bit word-length computer.
- (d) Explain the method of performing the calculation (107₁₀)/(17₁₀) in a computer with 8-bit word-length that uses two's complement.
- (4) (a) (i) If the fundamental product P₁ is contained in another fundamental product P2 then show that

$$P_1 + P_2 = P_1.$$

- (ii) Define what is meant by
 - (α) a sum-of-product expression
 - (β) a complete-sum-of-product expression.
- (iii) Show that the sum-of-product form of the expression A.B'.C + A.B.C + A.[B'+C]' + A'.B.C + [A+B'+C]' is equivalent to A.C+B.
- (iv) Hence find the complete-sum-of-product form of the expression.

(b) (i) Write down the Boolean expression for the following logic circuit.



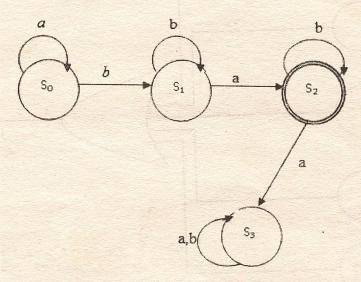
- (ii) Use a Karnaugh map to find a minimal sum-of-products expression for the network.
- (iii)Sketch the logic circuit for the minimal sum-of product expression you obtained in the part (ii) above.
- (5)(a) (i) Define the dual of a proposition concerning a Boolean Algebra B. Write the dual of the Boolean expression

$$(A.\overline{B})+1=1.$$

- (ii) For all A, B in $\mathcal{C}(.,+,\bar{0},0,1)$, prove that $A+B=\overline{(\overline{A}.\overline{B})}$
- (iii) Find the complete sum of product form of the expression

$$E = (xy + z')[xz' + yz]$$

(b) (i) Describe the sets recognized by the following finite state machine:



- (ii) Construct an automation M which will accept set of all strings consists of one or more 1's followed by a 0.
- (6). (i) Use the expand, guess and verify method to show that the closed-form-solution of the recurrence relation

$$S(n) = 4 * S(n-1)$$
 for $n \ge 2$

with the base value S(1) = 2 is given by

$$S(n) = 2^{2n-1}$$

(ii) Show that the solution to the linear first-order recurrence relation of the form S(n) = S(n-1) + g(n)

with the base value S(1) is given by

$$S(n) = S(1) + \sum_{i=2}^{n} g(i).$$

The first four numbers of a sequence are given by 5, 14, 26 and 41.

Find a recurrence formula of the form S(n) = S(n-1) + g(n) for the n^{th} number in the sequence.

Hence find a formula for the nth number in the sequence.
