Bachelor of Science General Degree Level III (Semester I) Examination

June 2015

Subject: Mathematics

Course Unit: MAT 311\(\beta\) /MPM 3113 (Group Theory)

Time: Two (02) Hours

Answer Four (04) Questions only

1. a) Show that

$$G = \left\{ \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} \mid p, q, r \in \mathbb{R}, \ pr \neq 0 \right\}$$

forms a group under matrix multiplication.

- b) Prove that a non-empty subset H of a group G is a normal subgroup of G if and only if $(gx)(gy)^{-1} \in H$ for all $x, y \in H$, $g \in G$.
- c) Using the above part b) show that $N = \left\{ \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \mid k \in \mathbb{R} \right\}$ is a normal subgroup of G.
- 2. a) Let $G = \langle a \rangle$ be a cyclic group of order n. Show that $G = \langle a^m \rangle$ if and only if gcd(m, n) = 1.
 - b) Consider the set $\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(a, b) : a \in \mathbb{Z}_2, b \in \mathbb{Z}_3\}.$
 - (i) Write down the elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$.
 - (ii) Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ forms a group under the operation \oplus defined by $(a,b) \oplus (c,d) = (a \oplus_2 c, b \oplus_3 d)$ for any $(a,b),(c,d) \in \mathbb{Z}_2 \times \mathbb{Z}_3$.
 - (iii) Does $\mathbb{Z}_2 \times \mathbb{Z}_3$ form an abelian group? Justify your answer.
 - (iv) Show that G = <(1,1)>.
 - (v) Using part a) find the other generators of the cyclic group $\mathbb{Z}_2 \times \mathbb{Z}_3$.
- 3. a) Let $\alpha = (6217)(2413)$ be a permutation defined on the set $X = \{1, 2, 3, 4, 5, 6, 7\}$.
 - (i) Express α as a product of disjoint cycles and product of transpositions.
 - (ii) Is α an odd permutation? Justify your answer.
 - b) Let p = (135), q = (241) and r = (2354) be permutations defined on the set $X = \{1, 2, 3, 4, 5\}$. Find $\tau = p^2 q^{-1} r$ and $o(\tau)$.
 - c) Let H and K be two subgroups of a group G. Show that
 - (i) $H \cap K$ is a subgroup of G;
 - (ii) If H and K are both normal in G then $H \cap K$ is normal in G.

4. a) Let a and b be arbitrary distinct element of a group G and, H be any subgroup of G.

Show that

- (i) $Ha = H \Leftrightarrow a \in H$
- (ii) $Ha = Hb \Leftrightarrow ab^{-1} \in H$
- b) Show that any two right (left) cosets of a subgroup are either disjoint or identical.
- c) A subgroup H of a group G is called a normal subgroup if xH = Hx for every element $x \in G$.

Let $H = \{0, 2, 4\}$ be a subgroup of the group $G = (\{0, 1, 2, 3, 4, 5\}, \oplus_6)$.

- (i) List all the left and right cosets of H in G.
- (ii) Hence determine whether H is normal in G.
- 5. a) Let G and G' be two groups and $f:G\to G'$ be a homomorphism. Define the kernel of f (Kerf). Prove that
 - (i) Kerf is a normal subgroup of G;
 - (ii) f is one-one if and only if $Ker f = \{e\}$, where e is the identity of G.
 - b) Let (G,*) and (G', \circ) be two groups. Define what is meant by an isomorphism $f: G \to G'$. Let $(\mathbb{R} \setminus \{-1\}, *)$ and $(\mathbb{R} \setminus \{0\}, .)$ be two groups. The operation '*' is defined by a*b=a+b+ab for all $a,b\in\mathbb{R}\setminus\{-1\}$ and '.' is the usual multiplication.
 - (i) Define a suitable map $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{-1\}$. Hence show that $(\mathbb{R} \setminus \{0\}, .) \cong (\mathbb{R} \setminus \{-1\}, *)$
 - (ii) Find kernel of f.
- 6. Prove or disprove the following statements.
 - a) Let H and K be two subgroups of a group G. HK is a subgroup of G if HK = KH.
 - b) Let H be any non-empty subset of a group G such that $H^{-1}=H$, where $H^{-1}=\{h^{-1}:h\in H\}$. Then H is a subgroup of G.
 - c) If a is a generator of a cyclic group G then a^{-1} is also a generator.
 - d) $(\mathbb{Q}, +) \cong (\mathbb{Q}^*, .)$, where $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$.
 - e) Let G' be a commutator subgroup of a group G. Then G' is normal in G.