University of Ruhuna

Bachelor of Science General Degree - Level II (Semester I) Examination - June/July 2015

Answer four questions only.

Subject: Applied Mathematics

Course Unit: AMT 212\beta/MAM2123

Computational Mathematics

Time:: Two (02) Hours

1. Consider the non-linear equation f(x) = 0.

- a) (i) State the necessary and sufficient conditions for f to apply the bisection method to find a root of the equation.
 - (ii) Can the bisection method be used to find the roots of the equation $\sin x + 1 = 0$? Justify your answer.
- b) State clearly in stepwise form of the bisection method algorithm for solving the nonlinear equation f(x) = 0 in the interval [a, b].
- c) (i) Derive the formula for the error bound in the n^{th} iteration step of the bisection method.
 - (ii) How many iterations are needed to solve the equation $x^3 x 3 = 0$ on [1, 2] using bisection method with guaranteed accuracy 10^{-5} ?
- 2. a) Define the order of convergence (rate of convergence) α of the sequence x_k for $k=0,1,\ldots$ derived to obtain an approximation for the root x^* of a non linear equation.
 - b) (i) State the Newton-Rapson formula (Newton's method) for finding an approximate root for the non linear equation f(x) = 0.
 - (ii) Show that the Newton-Rapson method for the solution of $x^k e^x = 0$ is given by

$$x_{n+1} = \frac{(k-1)x_n - x_n^2}{k + x_n}$$
 $n = 0, 1, 2, \dots$

Starting with $x_0 = 1$ calculate x_2 when k = 2.

c) The cubic equation $x^3 - 2 = 0$ can be written in the form x = g(x) in two ways, namely,

$$x_{n+1} = g_1(x_n) = x_n^3 + x_n - 2$$

$$x_{n+1} = g_2(x_n) = \frac{2 + 5x_n - x_n^3}{5}, \quad n \ge 0.$$

Which iteration scheme convergres to the solution $2^{\frac{1}{3}}$ and why? Use the convergent sequence to compute x_1 using $x_0 = 1.2$.

3. a) For a function f the forward divided differences are given in the following table in the usual notation.

$x_0 = 0.0$	$f[x_0] = ?$	$f[x_0, x_1] = ?$	50
$x_1 = 0.4$	$f[x_1] = ?$	$f[x_1, x_2] = 10$	$f[x_0, x_1, x_2] = \frac{50}{7}$
$x_2 = 0.7$	$f[x_2] = 6$	J [112]	

- (i) Determine the missing entries of the table.
- (ii) Using the Newton's divided difference formula, find the interpolating polynomial $P_2(x)$ for the above data.
- b) Let x_0, x_1, \ldots, x_n be n+1 distinct points in [a, b] with $x_0 = a$, $x_n = b$, and $f \in C^{(n+1)}[a, b]$. Let P(x) be the Lagrange polynomial interpolating the points such that $P(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$.
 - (i) Give the expression of P(x) and its error formula.
 - (ii) Consider the case n=3 and the following data:

Obtain the Lagrange interpolating polynomial P(x). Simplify your answer.

4. a) A free cubic spline interpolating polynomial S for a function f, is defined on [1,3] by

$$S(x) = \begin{cases} S_0(x) = 2(x-1) - (x-1)^3 & 1 \le x < 2\\ S_1(x) = a + b(x-2) + c(x-2)^2 + d(x-2)^3 & 2 \le x \le 3, \end{cases}$$

where $a, b, c, d \in \mathbb{R}$. Find a, b, c and d.

b) (i) Linear model for the data set (x_i, y_i) for i = 1, 2, ..., n is given by $y_i = a_0 + a_1 x_i + e_i$, with error e_i for i = 1, 2, ..., n. Obtain the following estimates for a_0 and a_1 using the least squared approximation method.

$$\hat{a}_1 = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}, \qquad \hat{a}_0 = \bar{y} - \hat{a}_1\bar{x},$$

where
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 and $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$.

(ii) Consider the following data set:

Using the least squared method, show that the best linear approximation to this data is y = -2x + 2.5.

- a) (i) Using the Taylor series expansion of a continuously differentiable function fat the point x+h for some small h>0, obtain the forward difference formula (FDF) of order h for the approximation of f'(x). Describe the error term of the approximation.
 - (ii) Verify that the above approximation is exact for the derivatives of any polynomial up to degree 1.
 - b) Consider the 3-point formula of $f'(x_0)$ given in the usual notation by

$$f'(x_0) \approx \frac{1}{2h}(-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h))$$

- (i) Explain briefly how you would obtain this 3-point formula. (Derivation is not required)
- (ii) Using the formula with h = 0.5, approximate f'(2), where $f(x) = x^2$.
- (iii) Is your approximation exact? Explain.
- c) The derivative of a function can be expressed as

$$f'(x) = \frac{1}{2h}(f(x+h) - f(x-h)) - \frac{h^2}{6}f^{(3)}(x) - \frac{h^4}{120}f^{(5)}(x) - \dots$$

with h > 0 small. Using this representation twice with h and h/2 and applying the Richardson extrapolation technique, derive a formula of order $O(h^4)$ to approximate f'(x). What is the error in the term of h^4 ?

- a) (i) Obtain the Trapezoidal rule for the approximation of the integral $\int_{0}^{b} f(x) dx$ with the error term.
 - (ii) Use the Trapezoidal rule to approximate the integral $\int_0^2 \frac{1}{x+4} dx$.
 - b) The composite Trapezoidal rule is given by

$$\int_{a}^{b} f(x) dx = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(a+jh) \right) - \left(\frac{b-a}{12} \right) h^{2} f''(\zeta)$$

with $h = \frac{b-a}{n}$ and $n \ge 1$, where $\zeta \in (a,b)$. Determine the values of n and h required to approximate the integral given in part (a)(ii) above within 10⁻³ and compute the integral using composite trapezoidal rule with n = 4.

- c) (i) State the Simpson rule in approximating the integral $\int_{0}^{b} f(x) dx$.
 - (ii) Use the Simpson's rule to approximate the integral given in part (a)(ii).