University of Ruhuna

Bachelor of Science General Degree Level III (First Semester Examination)

June/July 2015

Subject: Applied Mathematics

Course Unit: MMA3113/AMT313 β (Mathematical Methods in Physics and Engineering)

Time: Two (02) Hours

Answer 04 Questions only.

- a) Define $\mathcal{L}{F(t)}$, the Laplace transform of a function F(t), denoted by f(s).
 - b) If $\mathcal{L}{F(t)} = f(s)$ then show that

(i)
$$\mathcal{L}\{e^{at}F(t)\} = f(s-a), \ s > a$$
 (ii) $\mathcal{L}\{\sinh at\} = \frac{a}{s^2 - a^2}, \ s > |a|$

(iii)
$$\mathcal{L}\{tF(t)\} = -\frac{d}{ds}f(s)$$
 (iv) $\mathcal{L}\{\frac{F(t)}{t}\} = \int_{s}^{\infty} f(u)du$

c) Find the following Laplace transformations:

i)
$$\mathcal{L}\left\{(2e^{3t}\sin 4t\right\},$$
 (ii) $\mathcal{L}\left\{t\sinh 4t\right\}$

(i)
$$\mathcal{L}\left\{(2e^{3t}\sin 4t\right\}$$
, (ii) $\mathcal{L}\left\{t\sinh 4t\right\}$, (iii) $\mathcal{L}\left\{\frac{\sinh t}{t}\right\}$, (iv) $\mathcal{L}\left\{\frac{e^{-2t}-e^{-3t}}{t}\right\}$,

(v)
$$\mathcal{L}\left\{\int_0^t \frac{\sin u}{u} du\right\}$$
.

- a) Define the inverse Laplace transform $\mathcal{L}^{-1}\{f(s)\}\$ of f(s). 2.
 - b) Show, in the usual notation, that $\mathcal{L}^{-1}\left\{f'(s)\right\} = -tF(t)$

c) Find following inverse Laplace transformations:

(i)
$$\mathcal{L}^{-1}\left\{\frac{2s^3+10s^2+8s+40}{s^2(s^2+9)}\right\}$$
 (ii) $\mathcal{L}^{-1}\left\{\frac{s+2}{s^2(s+3)}\right\}$ (iii) $\mathcal{L}^{-1}\left\{\ln\left(1+\frac{1}{s^2}\right)\right\}$.

d) State the convolution theorem for the Laplace transformations. Apply convolution theorem to find the following inverse Laplace Transforations

(i)
$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$$
 (ii) $\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)^2}\right\}$.

- 3. a) Let $\mathcal{L}{Y(t)} = y(s)$. Show, in the usual notation, that
 - (i) $\mathcal{L}\{Y'(t)\} = sy(s) Y(0)$
 - (i) $\mathcal{L}\{Y''(t)\} = sy(s) Y(0)$ (ii) $\mathcal{L}\{Y''(t)\} = s^2y(s) - sY(0) - Y'(0)$
 - b) Using the Laplace transform method solve the following system of ordinary differential equations:

$$\frac{dX}{dt} + \frac{dY}{dt} = t
\frac{d^2X}{dt^2} - Y = e^{-t}$$
; $X(0) = 3, Y(0) = 0, X'(0) = -2.$

4. a) Show, in the usual notation, that

(i)
$$\mathcal{L}\left\{\frac{\partial U(x,t)}{\partial t}\right\} = su(x,s) - U(x,0)$$

(ii)
$$\mathcal{L}\left\{\frac{\partial^2 U(x,t)}{\partial t^2}\right\} = s^2 u(x,s) - sU(x,0) - U_t(x,0)$$

(iii)
$$\mathcal{L}\left\{\frac{\partial U(x,t)}{\partial x}\right\} = \frac{du(x,s)}{dx}$$
 and

(iv)
$$\mathcal{L}\left\{\frac{\partial^2 U(x,t)}{\partial x^2}\right\} = \frac{d^2 u(x,s)}{dx^2}$$
.

b) The faces x = 0 and x = 1 of a slab material for which thermal diffusivity k = 1 are kept at temperature 0 and 1 respectively until the temperature distribution becomes u = x. After time t = 0 both faces are held at temporature 0. Determine the temperature distribution at time t.

[You may assume that

$$\mathcal{L}^{-1}\left\{\frac{\sinh x\sqrt{s}}{s\sinh a\sqrt{s}}\right\} = \frac{x}{a} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} e^{-\frac{n^2\pi^2t}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

5. a) For m > 0, n > 0, the Beta function, B(m, n) is defined as:

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx.$$

- (i) Using Laplace Transform methods show in the usual notation that $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}.$
- (ii) Use the above result to show that $2\int_0^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = B(m,n)$.

b) Show followings using the results in part (a)

(i)
$$\int_0^1 x^{3/2} (1-x)^2 dx = \frac{\pi}{16}$$
 (ii) $\int_0^2 x^4 \sqrt{4-x^2} dx = 2\pi$

(ii)
$$\int_0^2 x^4 \sqrt{4 - x^2} dx = 2\pi$$

(iii)
$$\int_{0}^{\pi/2} \sin^4 \theta \cos^6 \theta d\theta = \frac{3\pi}{512}$$
 (iv) $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\tan \theta}} = \frac{\pi}{\sqrt{2}}$.

(iv)
$$\int_0^{\pi/2} \frac{d\theta}{\sqrt{\tan \theta}} = \frac{\pi}{\sqrt{2}}.$$

c) Use Laplace transform methods to show that

$$\int_0^\infty \cos x^2 dx = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

[In the usual notation you may assume that $\Gamma(p)\Gamma(p-1) = \frac{\pi}{\sin p\pi}$, 0 .]

- a) Suppose that f(x) is a periodic function with the period 2L and its Fourier series is given by $f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$ for -L < x < L; where $a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$, $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$ for $n = 1, 2, 3, \dots$ Show that f satisfies the Parsval's identity $\frac{1}{L} \int_{-L}^{L} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{n=0}^{\infty} (a_n^2 + b_n^2)$
 - b) Obtain the Fourier sine expansion of $f(x) = x(\pi x)$, $0 \le x \le \pi$ in the form: $f(x) = \frac{8}{\pi} \left(\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \dots \right).$

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^3} = \frac{\pi^3}{32}$$
,

(ii)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)^6} = \frac{\pi^6}{960}$$
 and

(iii)
$$\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$$
.