

University of Ruhuna - Faculty of Science Bachelor of Science General Degree - Level I (Semester I) Examination - July 2016

Subject: Mathematics

Course Unit: MAT111\(\beta\) / MAM1113 (Vector Analysis)

Time: Two (02) Hours

Answer Four (04) questions only

1. Let P be any point on a plane with position vector \underline{r} relative to the origin O. Consider a point A on this plane with position vector \underline{a} relative to the origin O. Suppose \underline{n} is a vector normal to the plane.

Show that the vector equation of the plane can be written as $\underline{r} \cdot \underline{a} = \underline{a} \cdot \underline{n}$.

Now consider a point B with position vector \underline{b} relative to the origin O such that BP is perpendicular to the plane. Show that the shortest distance, that is BP, to the plane $\underline{r} \cdot \underline{a} = \underline{a} \cdot \underline{n}$ from the point B is given by

$$\frac{|d-\underline{b}\cdot\underline{n}|}{|\underline{n}|},$$

where $\underline{r} \cdot \underline{a} = \underline{a} \cdot \underline{n} = d$.

Three points A,B and C have position vectors $\underline{i}+2\underline{j}-3\underline{k},\underline{i}+5\underline{j}$ and $5\underline{i}+6\underline{j}-\underline{k}$ respectively, relative to an origin O.

- (a) Show that \overrightarrow{AB} is perpendicular to \overrightarrow{BC} and find the area of the triangle ABC.
- (b) Find the vector product $\overrightarrow{AB} \times \overrightarrow{BC}$. Hence find the equation of the plane \overrightarrow{ABC} in the form $\underline{r} \cdot \underline{n} = p$, where p is a constant.
- (c) The point D has position vector $4\underline{i} \underline{j} + 3\underline{k}$ relative to O. Find the shortest distance from the point D to the plane ABC. Hence show that the volume of the tetrahedron ABCD is 21 (units).
- (d) Obtain, in Cartesian form the equation of the plane Π which contains D and which has the property that for each point E in Π the volume of the tetrahedron ABCE is still 21 (units).

2. Define, in the usual notation,

- (i) grad f of a scalar field f(x, y, z)
- (ii) div \underline{F} and curl \underline{F} of a vector field $\underline{F}(x, y, z) = F_1 \underline{i} + F_2 \underline{j} + F_3 \underline{k}$
- (a) Consider the vector field $\underline{A} = xy^2 \underline{i} + zy^2 \underline{j} + xz^2 \underline{k}$ on the sphere $x^2 + y^2 + z^2 = 14$. Find
 - (i) the directional derivative of \underline{A}^2 at the point (2,0,3).
 - (ii) the outward unit normal vector to the sphere at the point (3,2,1)
 - (iii) the component of the directional derivative of part (i) in the direction given in part (ii).

- (b) If a vector field $\underline{F}(x, y, z)$ is irrotational then there exists a scalar field f(x, y, z) such that $\underline{F} = \operatorname{grad} f$. Consider the vector field $\underline{F} = 2xye^z\underline{i} + x^2e^zj + x^2ye^z\underline{k}$.
 - (i) Show that \underline{F} is irrotational.
 - (ii) Show that the scalar function f(x, y, z) is given by $f(x, y, z) = x^2 y e^z + C$, where C is a constant.
- 3. Verify the following results. Here $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and f(r) is a differentiable function. Furthermore, all notations have usual meanings.

(i)
$$\underline{\nabla}^2(\ln r) = \frac{1}{r^2}$$

(ii) div
$$\left[\frac{f(r)}{r}\underline{r}\right] = \frac{1}{r^2}\frac{d}{dr}\left[r^2f(r)\right]$$

- (iii) curl $[f(r)\underline{r}] = 0$
- (a) Explain what you mean by the line integral of a vector field F over a simple smooth curve C.
 A force F = 2x²y i + 3xy j displaces a particle in the xy-plane from (0,0) to (1,4) along the curve given by y = 4x². Find the work done by the force.
 - (b) State the Green's theorem in the plane. Verify Green's theorem for

$$\int_C (x-y) \, dx + 3xy \, dy,$$

where C is the boundary of the region enclosing $x^2 = 4y$ and $y^2 = 4x$.

5. State the divergence theorem of Gauss.

If D is the region bounded by the closed cylinder $x^2 + y^2 = 16$, z = 0 and z = 4 and $\underline{F} = 3x^2\underline{i} + 6y^2\underline{j} + z\underline{k}$, verify the divergence theorem.

6. State the Stokes' theorem.

Verify Stokes' theorem for the vector field $\underline{F} = (x^2 + y - 4)\underline{i} + 3xy\underline{j} + (2xz + z^2)\underline{k}$ over the surface of the hemisphere $x^2 + y^2 + z^2 = 16$ above the xy-plane and C is its boundary.