University of Ruhuna

Bachelor of Science Special Degree Level I (Semester I) Examination - July 2016

Subject: Mathematics

Course Unit: MSP312 β . (Real Analysis III)

Time: Two (02) Hours

Answer 04 Questions only.

- 1. (a) Let $\mathbf{a} \in \mathbb{R}^n$, r > 0, and A be a subset of \mathbb{R}^n . Define the following terms:
 - (i) An open n-ball in \mathbb{R}^n with the center \mathbf{a} and the radius r > 0.
 - (ii) An interior point of A.
 - (iii) An exterior point of A.
 - (b) Prove that the Cauchy-Schwartz inequality

$$|\mathbf{x}.\mathbf{y}| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$$
, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

(c) Using the Cauchy-Schwartz inequality prove that the triangle inequality

$$\parallel \mathbf{x} + \mathbf{y} \parallel \leq \parallel \mathbf{x} \parallel + \parallel \mathbf{y} \parallel, \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$

(d) Show that

$$(a+b+c)^2 \le 3(a^2+b^2+c^2)$$

where a, b, c are real numbers.

- (e) Determine whether each of the following set is open or not.
 - (i) $\mathbf{A} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 2\}$
 - (ii) $\mathbf{B} = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| \ge 2 \}.$

2. (a) Let $f: \mathbf{A} \to \mathbb{R}$ be a function defined on an open set $\mathbf{A} \subset \mathbb{R}^n$. Define the followings:

(i)
$$\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L$$
, and

(ii) f is continuous at a point a,

where $\mathbf{a} \in \mathbf{A}$.

(b) Find the following limits:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{xy(x^2-y^2)}{x^2+y^2}$$
,

(ii)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{x^2 y^2 + 1} - 1}{x^2 + y^2}$$
.

(c) Prove that the following limits do not exist.

(i)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
,

(ii)
$$\lim_{(x,y)\to(0,1)} \frac{x}{x+y-1}$$
.

(d) Use part (a)(ii), to show that

$$f(x,y) = \begin{cases} x \sin(\frac{1}{y}) + y \sin(\frac{1}{x}) & xy \neq 0\\ 0 & xy = 0 \end{cases}$$

is continuous at (0,0).

- **3.** Let f(x,y) be a two variable function defined on a subset **A** of \mathbb{R}^2 .
 - (a) Define the first partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ of f.

3

(b) If

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

show that both partial derivetives exist at (0,0), but the function is not continuous at (0,0).

- (c) Let $(a,b) \in A$. If
 - (i) $\frac{\partial f}{\partial y}$ is continuous at (a,b),
 - (ii) $\frac{\partial f}{\partial x}$ exists at (a, b)

then show that f is differnetiable at (a, b).

(d) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0\\ 0 & x^2 + y^2 = 0 \end{cases}$$

is continuous, possesses partial derivatives but is not differentiable at the origin.

- **4.** (a) Let $z = x^3 xy + y^3$, $x = r\cos(\theta)$, $y = r\sin(\theta)$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
 - (b) Show that z = f(x, y) satisfies

$$x \frac{\partial z}{\partial x} = 2 y \frac{\partial z}{\partial y},$$

where f is differentaible function.

- (c) If u_1, u_2, \ldots, u_n be n differntiable functions of n variables x_1, x_2, \ldots, x_n , then write down the Jacobian matrix.
- (d) The roots of the equation in λ

$$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0,$$

are u, v, w. Prove that the Jacobian is given by,

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} = -2 \frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}$$

- 5. (a) Explain briefly, how you find the extreme values of a two-variable function f(x,y) defined on a subset in \mathbb{R}^2 .
 - (b) Write down a necessary condition for f(x, y) to have an extreme value at (a, b).
 - (c) Give an example for a function f(x,y) that has an extreme value at (0,0) but the partial derivatives f_x and f_y do not exist at (0,0).
 - (d) Find the maxima and minima of the function

$$f(x,y) = x^3 + y^3 - 3 x - 12 y + 20.$$

- **6.** (a) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a differential function at (a, b, c). Show that
 - (i) the tangent plane to the surface f(x, y, z) = 0 at the point (a, b, c) is given by

$$f_x(a, b, c) (x - a) + f_y(a, b, c) (y - b) + f_z(a, b, c) (z - c) = 0$$
, and

(ii) the normal line to the surface at (a, b, c) is given by

$$\frac{(x-a)}{f_x(a,b,c)} = \frac{(y-b)}{f_y(a,b,c)} = \frac{(z-c)}{f_z(a,b,c)}.$$

- (b) For the surface given by the equation $z = x^2 3y^2 + xy$, find the equations of the
 - (i) tangent plane
 - (ii) normal line

at the point (1, 1, -1) on the surface.

(c) Prove that the volume of the greatest rectangular parallelopiped that can be inscribed in the ellispe

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$$

is $\frac{8 \ abc}{3 \sqrt{3}}$.