University of Ruhuna

Bachelor of Science Special Degree Level I (Semester I) Examination - July 2016

Subject: Statistics

Course Unit: MSP3193 (Bayesian Inference and Decision Theory)

Time: Three (03) Hours

Answer 04 Questions only.

1. Let X, Y, Z have joint pdf f(x, y, z) = 2(x + y + z)/3, 0 < x < 1, 0 < y < 1, 0 < z < 1, zero otherwise.

- (a) Find the marginal probability density function of X, Y, and Z.
- (b) Compute $Pr(0 < X < \frac{1}{2}, \ 0 < Y < \frac{1}{2}, \ 0 < Z < \frac{1}{2})$ and $Pr(0 < X < \frac{1}{2})$ $Pr(0 < Y < \frac{1}{2})$ and $Pr(0 < Z < \frac{1}{2})$.
- (c) Are X, Y, and Z are independent? (You may use part (b))
- (d) Find the conditional distribution of X and Y, given Z=z, and compute E(X+Y/z).
- 2. Let y be the number of heads in n spins of a coin, whose probability of heads is θ .
 - (a) If your prior distribution for θ is uniform on the range [0, 1], derive your predictive distribution for y,

$$Pr(y=k) = \int_0^1 Pr(y=k|\theta) \ d\theta,$$

for each k = 0, 1, ..., n.

(b) Suppose you assign a $Beta(\alpha, \beta)$ prior distribution for θ , and then you observe y heads out of n spins. Show algebraically that your posterior mean of θ always lies between your prior mean, $\frac{\alpha}{\alpha+\beta}$ and the observed relative frequency of heads $\frac{y}{n}$.

- (c) Show that, if the prior distribution on θ is uniform, the posterior vraiance of θ always less than the prior variance.
- (d) Given an example of a $Beta(\alpha, \beta)$ prior distribution and data y, n, in which the posterior variance of θ is higher than the prior variance.
- 3. A random sample of n students is drawn from a large population, and their weights are measured. The average weight of the n sampled students is $\bar{y}=150$ pounds. Assume the weights in the population are normally distributed with unknown mean θ and known standard deviation 20 pounds. Suppose your prior distribution for θ is normal with mean 180 and standard deviation 40.
 - (a) Give your posterior distribution for θ . (Your answer will be a function of n).
 - (b) A new student is sampled at random from the same population and has a weight of \bar{y} pounds. Give a posterior predictive distribution for \bar{y} . (Your answer will be a function of n).
 - (c) For n=10, give a 95% posterior interval for θ and a 95% posterior predictive interval for \bar{y} .
 - (d) Do the same for n = 100.

4. Consider the model

$$X_i | \theta \sim \text{iid } N(\theta, \sigma^2), \text{ where } \sigma^2 \text{ is known } \theta \sim N(\theta_0, \sigma_0^2) \text{ where } \theta_0 \text{ and } \sigma_0^2 \text{ are known }$$

- (a) Find the sufficient statistic for θ .
- (b) Write down an equivalent formulation of the model in terms of the suuficient statistic and θ .
- (c) Find the posterior distribution of θ .
- (d) Show that the posterior mean and posterior variance are given by

$$\left(\frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n}\right) \bar{x} + \left(\frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n}\right) \theta_0 \text{ and } \frac{(\sigma^2/n) \sigma_0^2}{(\sigma_0^2 + \sigma^2/n)}$$

respectively.

- 5. (a) What is meant by a conjugate family of distributions?
 - (b) Consider the model

$$X_i | \theta \sim \text{iid Poisson}(\theta)$$

 $\theta \sim \text{Gamma}(\alpha, \beta)$, where α and β are known.

- (i) Find the posterior distribution of θ
- (ii) Is this conjugate family?
- (c) Find the prior predictive distribution for a single observation, y, for the model in part (b). Identify the form of this distribution?
- (d) In many applications, it is convenient to extend the Poisson model for data points x_1, x_2, \ldots, x_n to the form

$$x_i \sim \text{Poisson}(y_i\theta)$$

where the values y_i are known positive values of an explanatory variable y.

- (i) Give an example for θ and y_i for such a model.
- (ii) Using $\theta \sim \text{Gamma}(\alpha, \beta)$ in part (b), write down the posterior distribution of θ . (You do not need to derive this.)

6. Suppose a random sample is taken from an exponential distribution with mean λ . If we assign the usual noninformative prior $g(\lambda) \propto 1/\lambda$, then the poeterior density is given, up to a proportionality constant, by

$$g(\lambda/\text{data}) \propto \lambda^{-n-1} \exp\{-s/\lambda\},$$

where n is the sample size and s is the sum of the observations.

- (a) Show that if we transform λ to $\theta = 1/\lambda$, then θ has a gamma density with shape parameter n and rate parameter s.
- (b) In a life-testing illustration, five bulbs are tested with observed burn times (in hours) of 751, 594, 1213, 1126, and 819. Using the R function rgamma write down a short R codes to simulate 1000 values from the posterior distribution of θ .
- (c) Write down a short R codes to transform these simulated draws in part (b) and to obtain a simulated sample from the posterior distribution of λ .
- (d) Explian briefly how you compute the posterior probability that λ exceeds 1000 hours.