University of Ruhuna - Faculty of Science Bachelor of Science General Degree - Level II (Semester I) Examination - July 2016

Subject: Applied / Industrial Mathematics

Course Unit: AMT211 β / IMT211 β (Fluid Dynamics)

Time: Two (02) Hours

Answer Four (04) questions only

1. Obtain, in the usual notation, the equation of continuity for a moving fluid having density ρ and velocity q in the form

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \, \underline{q}) = 0.$$

Hence, for an incompressible, homogeneous and irrotational fluid, show that the equation of continuity can be reduced to the form $\nabla^2 \phi = 0$, where ϕ is the velocity potential.

The velocity components at a point in an incompressible fluid having spherical polar coordinates (r, θ, ψ) are $(2Mr^{-3}\cos\theta, Mr^{-3}\sin\theta, 0)$, where M is a constant.

- (i) Show that the velocity is of the potential kind.
- (ii) Find the velocity potential and the equations of the streamlines.

2. Derive, in the usual notation, the Euler's equation of motion,

$$\underline{F} - \frac{1}{\rho} \, \underline{\nabla} p = \frac{d\underline{q}}{dt}$$

for a perfect fluid moving under a force \underline{F} per unit mass and velocity \underline{q} .

Staring from the Euler's equation of motion for a perfect fluid and by using suitable conditions, deduce that

$$\underline{\nabla}\left(\frac{p}{\rho} + \frac{q^2}{2} + \Omega\right) = \underline{q} \wedge \underline{\zeta},$$

where $\zeta = \operatorname{curl} q$ and Ω is the scalar potential such that $\underline{F} = -\underline{\nabla}\Omega$.

A perfect, incompressible fluid is moving steadily around the outside of a fixed cylinder of radius a and vertical axis OZ. The speed at a distance r from the axis OZ is $\frac{a}{r}$. Show that the motion is irrotational.

If the surface of the fluid is open to the atmosphere and the origin O is chosen on the free surface such that z = 0 when r = a, prove that the free surface is given by

$$2gz = 1 - \frac{a^2}{r^2}.$$

3. An incompressible, inviscid fluid of uniform density ρ is in irrotational motion. Show, in the usual notation, that the kinetic energy T of the fluid enclosed by a surface S is given by

$$T = \frac{1}{2}\rho \int_{S} \phi \frac{\partial \phi}{\partial n} \, dS,$$

where \underline{n} is the outward unit normal vector to the fluid surface and ϕ is the velocity potential.

The space between a solid sphere of radius a and a spherical shell of radius b(b > a) is filled with an incompressible fluid. The sphere and shell have the constant velocities $u\underline{i}$ and $v\underline{i}$ respectively through the centers. Here \underline{i} is the unit vector in the direction of the x-axis.

(i) Show that at the instant when the sphere and shell are concentric, the velocity potential of the fluid is given by

$$\phi = \left(\frac{ua^3 - vb^3}{b^3 - a^3}r + \frac{(u - v)a^3b^3}{2(b^3 - a^3)}r^{-2}\right)\cos\theta.$$

(You may assume that the velocity potential of the fluid is in the form $\phi = (Ar + Br^{-2})\cos\theta$ and fluid motion is irrotational).

- (ii) Find the kinetic energy of the fluid near the sphere.
- (iii) What can you say about the above kinetic energy when $b \to \infty$?
- 4. Show, in the usual notation, that the velocity potential at any point P due to the three dimensional doublet (dipole) of strength μ is

$$\frac{\mu\cos\theta}{r^2}$$
,

where O is the origin, OP = r and θ is the angle between OP and the x-axis.

(You may assume that the velocity potential at any point P due to a three dimensional source of strength m which is at the origin is $\frac{m}{r}$, where OP = r.)

The plane x=0 is a rigid boundary to a fluid of constant density occurring in the region x>0. A three dimensional doublet of strength μ , whose axis is in the direction of the x-axis, is placed at a point A on the x-axis in the fluid, where OA=a and O is the origin.

(i) Show that the velocity potential at any point P of the system is

$$\phi = \frac{\mu(r\cos\theta - a)}{(r^2 + a^2 - 2ra\cos\theta)^{3/2}} - \frac{\mu(r\cos\theta + a)}{(r^2 + a^2 + 2ra\cos\theta)^{3/2}},$$

where OP = r and θ is the angle between OP and the x-axis.

- (ii) Find the velocity potential at any point on the rigid boundary.
- (iii) Find the velocity components of the fluid at a point on the rigid boundary in spherical polar coordinates.
- (iv) If the pressure at infinity is P_{∞} , show that the difference between pressure on the boundary and P_{∞} is

$$\frac{18\mu^2 a^2 r^2 \rho}{(r^2 + a^2)^5}.$$

(You may assume that the fluid is irrotational)

5. The complex potential at any point in a two dimensional fluid is given by

$$\omega(z) = -m \ln \left(\frac{z-a}{z+a} \right),$$

where m and a are real constants.

What arrangement of source and sink will give rise to the above complex potential?

Now, the above system is placed in a fluid moving with the constant velocity $-v\underline{i}$. Here \underline{i} is the unit vector in the direction of x-axis.

- (i) Write down the new complex potential of the system.
- (ii) Show that the streamlines of the system are given by

$$\frac{2ya}{x^2 - a^2 + y^2} = \tan^{-1}\left(\frac{vy}{m}\right).$$

- (iii) Find the stagnation points of the system.
- 6. State the Milne-Thomson circle theorem and its extension.

A source and sink of equal strength m are placed at the points (a/2,0) and (-a/2,0) respectively within a fixed circular boundary |z| = a.

(i) Show that the complex potential of the system is

$$\omega(z) = m \ln \left(\frac{(2z+a)(2a+z)}{(2z-a)(2a-z)} \right).$$

(ii) Show that the streamlines are given by

$$\left(r^2 - \frac{1}{4}a^2\right)(r^2 - 4a^2) - 4a^2y^2 = ky(r^2 - a^2),$$

where $k = -\frac{5a}{\tan\left(\frac{\psi}{m}\right)}$ and ψ is the stream function.

(iii) Find the speed of fluid at the point (a, θ) .

රුහුණ විශ්වවිදහලය - විදහ පීඨය

වීද්යාවේදී සාමානය උසාධි - දෙවන ස්ථල (පළමු සමාසික) පරීක්ෂණය - 2016 ජූලි

විෂයය: වµවහාරික / කර්මාන්ත ගණිතය

පාඨමාලා ඒකකය: AMT211eta/IMT211eta (කරල ශතිකය)

කාලය: පැය දෙකයි (03)

පුශ්ත හතරකට (04) පමණක් පිළිතුරු සපයන්න

 $m{1}$. $m{q}$ පුවේගයෙන් වලනය වන සහත්වය $m{p}$ වන තරලයක් සදහා සාන්තතව සමීකරණය, සුපුරුදු අංකනයෙන්,

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \underline{\eta}) = 0$$

ආකාරයෙන් ලබාගන්න.

ඒතයින්, අසමපීඩා, සමජාතිය, නිර්භුමණ තරලයක් සදහා සාන්තතා සම්කරණය $\underline{
abla}^2\phi=0$ ආකාරයට ඌනනය කළ හැකි බව පෙන්වන්න; මෙහි ø යනු පුවේග විභවය වේ. අසමපීඩා තරලයක ගෝලීය ධුැවක බණ්ඩාංක $(r, heta,\phi)$ සහිත ලක්ෂයෙක පුවේග සංරවක

 $(2Mr^{-3}\cos heta,\ Mr^{-3}\sin heta,\ 0)$ වේ; මෙහි M යනු නියකයකි.

- (i) පුවේගය විභව ආකාරයෙන් ඇති බව පෙන්වන්න.
- (ii) පුවේග විහවය සහ අනාකුල රේඛාවල සමීකරණ සොයන්න.
- $oldsymbol{2}$. ඒකක ස්කන්ධයකට E බලයක් යටතේ q පුවේගයෙන් වලනය වන පරිපූර්ණ තරලයක් සදහා සුපුරුදු

$$\underline{F} - \frac{1}{\rho} \underline{\nabla} p - \frac{dq}{dt}$$

යන ඔයිලර් සමීකරණය වදුන්පන්න කරන්න.

පරිපූර්ණ තරලයක් සදහා ඔයිලර් සමීකරණයෙන් ආරම්භ කරමින් හා සුදුසු තත්වයන් උපයෝගී කරගනිමින්

$$\overline{\nabla}\left(\frac{p}{\rho} + \frac{q^2}{2} + \Omega\right) = \underline{q} \wedge \underline{\zeta}$$

බව අපෝහනය කරන්න; මෙහි $\underline{\zeta}=\operatorname{curl} q$ වන අතර Ω යනු $\underline{F}=-\underline{
abla}\Omega$ වන පරිදි අදිශ විභවය වේ. අරය a සහ සිරස් අක්ෂය් OZ වන අවල සිලින්ඩරයක පිටත පෙදෙපෙහි පරිපූර්ණ, අසමපිඩා තරලයක් සතන ලෙස වලනය වේ. OZ අඤයේ සිට r දුරකදී තරලයේ වේගය $rac{a}{r}$ වේ. තරලය නිර්හුමණ බව

තරල පෘෂ්ඨය වායුගෝලයට විවෘත වේ තම සහ නිදහස් පෘෂ්ඨය මත O මූලය තෝරාගෙන ඇත්තේ r=a විට z=0 වන ලෙස නම නිදහස් පෘෂ්ඨයේ සම්කරණය

$$2gz = 1 - \frac{a^2}{r^2}$$

බව සාධනය කරන්න.

3. ho නම ඒකාකාර සනත්වයෙන් යුත් අසමපීඩා සුළාවී තරලයක් නිර්භුමණ වලිනයේ යෙදේ. S නම පෘෂ්ඨයක් මහින් අන්තර්ගන කරන තරලයේ වාලක ශක්තිය වන T, සුසුරුදු අංකනයෙන්,

$$T = \frac{1}{2}\rho \int_{S} \phi \frac{\partial \phi}{\partial n} dS$$

මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි \underline{n} යනු තරල සෘෂ්ඨයෙන් ඉවතට ඇදී ඒකක අභිලම්බ දෛශිකයද, ϕ යනු පුවෙග විභවයද වේ.

අරය a වූ සන නෝලයක් සහ අරය b(>a) වූ හෝලීය තබොලක් අතර අවකාශය අසමපීඩා තරලයකින් පුරවා ඇත. හෝලයේ සහ කබොලේ කේන්දු හරහා වූ නියන පුවෙග පිළිවෙලින් $u\underline{i}$ සහ $v\underline{i}$ වේ. මෙහි \underline{i} යනු x-අසෂය දිශාවෙ වන ඒකක දෛශීකය වේ.

(i) ගෝලය සහ කබොල ඒකකේන්දීයව පිහිටන විට තරලයේ පුවෙග විභවය

$$\phi = \left(\frac{ua^3 - vb^3}{b^3 - a^3}r + \frac{(u - v)a^3b^3}{2(b^3 - a^3)}r^{-2}\right)\cos\theta$$

මගීන් දෙනු ලබන බව පෙන්වන්න.

(තරලයේ පුවෙග විභවය $\phi=(Ar+Br^{-2})\cos\theta$ ආකාරයට වන බව සහ තරල වලිතය නිර්භුමණ බව ඔබට උපකල්පනය කල හැකිය.)

- (ii) ගෝලයට ආසන්න තරලයේ වාලක ශක්තිය සොයන්න.
- (iii) $b o \infty$ වන විට ඉහත වාලන ශක්තිය ගැන ඔබට නුමක් කිව හැකිද?
- 4. පුබලතාවය μ වන නිමාන ද්වීධුැවයක් ගෝතුනොවගෙන ඕනැම P ලඎයකදී පුවෙග වීභවය, සුපුරුදු අංකනයෙන්,

$$\frac{\mu \cos \theta}{r^2}$$

බව පෙන්වන්න; මෙහි O යනු මූලයද, OP=r සහ θ යනු OP සහ x-අයාය අතර කෝණය වෙ. (OP=r වන පරිදි O මූලයෙහි තබා ඇති පුබලතාවය m වන නිමාන පුහවයක් නිසා ඔනැම P ලක්ෂයෙක පුවෙග විභවය $\frac{m}{r}$ බව ඔබට උපකල්පනය කල හැකිය.

නියත සනත්වයෙන් යුත් තරලයක් සදහා x=0 තලය දෘඩ මායිමක් ලෙස කියා කරන අතර තරලය x>0 පෙදෙසෙහි පවති. තම අකෘය OX දිශාවට වූ පුබලතාවය μ වන නිමාන ද්වීධුැවයක්, තරලය තුළ OX අකෘය මත වූ A ලකෘෂයක තබා ඇත; මෙහි OA=a සහ O යනු මූලය වේ.

(i) ඔතෑම P ලඎායක්දී පද්ධතියේ පුවෙග විභවය

$$\phi = \frac{\mu(r\cos\theta - a)}{(r^2 + a^2 - 2ra\cos\theta)^{3/2}} - \frac{\mu(r\cos\theta + a)}{(r^2 + a^2 + 2ra\cos\theta)^{3/2}}$$

බව පෙන්වන්න; මෙහි OP=r සහ heta යනු OP සහ x-අඤය අතර කෝණය වේ.

- (ii) දෘඩ මායිම මත ඔනෑම ලඎයෙකදී පුවෙග විභවය සොයන්න.
- (iii) ගෝලීය ධුැවක ඛණ්ඩාංක අනුසාරයෙන් දෘඩ මායීම මත ඔනෑම ලස්ෂායකදී තරලයේ පුවෙග සංරචක සොයන්න.

 $({
m iv})$ අනත්තයේදී පීඩනය P_∞ හම, මායිම මන පීඩනය සහ P_∞ අතර වෙනස

$$\frac{18\mu^2a^2r^2\rho}{(r^2+a^2)^5}$$

බව පෙන්වන්න. (තරල වලිකය නිර්භුමණ බව ඔබට උපකල්පනය කල හැකිය.)

5. ද්වීමාන තරලයක් තුළ ඔනැම ලක්ෂයෙකදී සංකීර්ණ විභවය,

$$\omega(z) = -m \ln \left(\frac{z - a}{z + a} \right)$$

මගීන් දෙනු ලැබෙ. මෙහි m සහ a යනු තාන්ත්වික නියන වේ.

පුහට සහ ආපායන වල කුමන සැකැසීමක් ඉහත සංකීර්ණ විභවය ලබාදීමට හේතු වෙද? දැන් ඉහත පද්ධතිය නියන -vi පුවෙගයකින් වලනය වන තරලයක් තුල තබනු ලැබේ. මෙහි i යනු x-අඤයේ දීශාවේ වන ඒකක වෛශිකය වේ.

(i) පද්ධතියේ නව සංකීර්ණ විභවය ලියා දක්වන්න.

- (ii) $\frac{2ya}{x^2-a^2+y^2}= an^{-1}\left(\frac{vy}{m}\right)$ මගින් පද්ධතියේ අනාකූල රේඛා දෙනු ලබන බව පෙන්වන්නු.
- (iii) පද්ධතියේ නිසලන ලඎ සොයන්න.
- 6. මිල්න්-නොමසන් වෘත්ත පුමෙයය සහ එහි විස්තීර්ණය පුකාශ කරන්න.

|z|=a අවල වෘත්තාකාර මායිමක් තුළ එකම m පුබලතාවයෙන් යුත් පුභවයක් සහ ආපායනයක් පිළිවෙලින් $\left(rac{a}{2},0
ight)$ සහ $\left(-rac{a}{2},0
ight)$ ලසුභවල තබා ඇත.

(i) පද්ධතියේ සංකීර්ණ විභවය

$$\omega(z) = m \ln \left(\frac{(2z+a)(2a+z)}{(2z-a)(2a-z)} \right)$$

බව පෙන්වත්ත.

(ii) අනාකුල රේඛා

$$\left(r^2 - \frac{1}{4}a^2\right)(r^2 - 4a^2) - 4a^2y^2 = ky(r^2 - a^2)$$

මගින් දෙනු ලබන බව පෙන්වන්න. මෙහි $k=-\frac{5a}{ an\left(\dfrac{\psi}{m}\right)}$ සහ ψ යනු අනාකූල ශීතය වේ.

(iii) (a, heta) ලක්ෂායේදී තරලයේ වේගය සොයන්න.

1