University of Ruhuna

Bachelor of Science Special Degree in Mathematics Level I (Semester I) - Examination. August 2017

Subject: Mathematics Course Unit: MSP3144

.

Mathematical Methods for Physics and Engineering

Time:Three (03) Hours

Answer four (04) questions selecting at least one from Section B

Section A

- 1. a) (i) Define the exponential order of a function f(t).
 - (ii) Determine whether the function $f(t) = \frac{1}{t-5}$ is of exponential order or not.
 - b) (i) Define $\mathcal{L}(f(t))$, the Laplace transforms of a function f(t), denoted by F(s).
 - (ii) Using the definition of Laplace transform, find $\mathcal{L}(3e^{-2t})$ and deduce the region for s.
 - c) If $\mathcal{L}(f(t)) = F(s)$, show that
 - (i) $\mathcal{L}(e^{at}f(t)) = F(s-a)$,
 - (ii) if $g(t) = \begin{cases} f(t-a); & t > a, \\ 0; & t \leq a, \end{cases}$ then $\mathcal{L}(g(t)) = e^{-as} F(s),$
 - (iii) $\mathcal{L}(tf(t)) = -\frac{d}{ds}(F(s))$.
 - d) Using the Laplace transform $\mathcal{L}(e^{iat})$ obtain the Laplace transforms $\mathcal{L}(\sin(at))$ and $\mathcal{L}(\cos(at))$.
 - e) Let $f(t) = \begin{cases} t^2 + 1; & 0 \le t < 1, \\ e^{-3t} + 1; & 1 \le t < 2, \\ 1; & t > 1. \end{cases}$
 - (i) Write down the function f(t) in terms of unit step functions.
 - (ii) Using the appropriate results in part (c) or otherwise find $\mathcal{L}(f(t))$.
- 2. a) (i) Define the inverse Laplace transform $\mathcal{L}^{-1}(F(s))$ of F(s) denoted by f(t)
 - (ii) Find the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{1}{s(s^2+1)}\right)$.
 - (iii) Use the derivative property of Laplace transforms to find $\mathcal{L}^{-1}(s^{-4})$.
 - b) (i) State the convolution theorem of Laplace transforms.
 - (ii) Use this theorem to find the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+1)}\right)$
 - c) Let $\mathcal{L}(y(t)) = Y(s)$. Show, in the usual notation, that
 - (i) $\mathcal{L}(y'(t)) = sY(s) y(0)$.
 - (ii) $\mathcal{L}(y''(t)) = s^2 Y(s) sy(0) y'(0)$.
 - d) Use the Laplace transform method to solve the initial value problem

$$y''(t) - y(t) = 1,$$
 $y(0) = 0,$ $y'(0) = 1.$

- 3. a) Let $f(x) = \cos x + 2\sin(5x)$.
 - (i) Show that the function f is periodic with period 2π .
 - (ii) Determine whether the function f is even, odd or neither.
 - b) Let the Fourier series of the periodic function f(x) = x in the interval $(-\pi, \pi)$ be given by, in the usual notation,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos nx + b_n \sin nx].$$

- (i) Find the Fourier coefficients a_0 , a_n and b_n and obtain the Fourier series f(x).
- (ii) To what value does the Fourier series converge at $x = \frac{\pi}{2}$?
- (iii) To what value does the Fourier series converge at $x = \pi$?
- (iv) Evaluate the sum $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ of the Fourier series above with a minimum number of calculations.
- c) Consider the Fourier series of complex form of the function f(x) = 1 + x, $-\pi < x < \pi$, given by

$$f(x) = \sum_{n=-\infty}^{n=\infty} c_n e^{inx}.$$

Show that $c_0 = 1$ and find c_n , $n \neq 0$.

- 4. a) (i) Define the gamma function $\Gamma(x)$, x > 0.
 - (ii) Using the definition of gamma function, show that $\Gamma(x+1) = x\Gamma(x)$.
 - (iii) Find $\Gamma\left(\frac{5}{2}\right)$ and $\Gamma\left(-\frac{1}{2}\right)$, provided $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
 - (iv) Show that $\int_{0}^{\infty} x^{3} e^{-4x} dx = \frac{3}{128}$.
 - b) (i) Define the beta function B(m, n) for any m, n > 0.
 - (ii) Using beta and gamma functions with the substitution x-1=2y show that $\int_1^3 \frac{dx}{\sqrt{(x-1)(3-x)}} = \pi$.
 - c) The Bessel function $J_{\nu}(x)$ of order ν is given by, in the usual notation,

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{2k}.$$

Show that $J_{-n}(x) = (-1)^n J_n(x)$ for $n \in \mathbb{N}$.

- d) Consider the differential equation xy'' + 3y' + xy = 0.
 - (i) Using the substitution u=xy convert this differential equation into the Bessel equation of order 1.
 - (ii) Write down the Bessel function for the Bessel equation obtained in part(i) above and hence find a solution y(x) for the given differential equation.

Section B

- 5. a) (i) Define the Fourier transform $\mathcal{F}(f(t))$ and inverse Fourier transform $\mathcal{F}^{-1}(F(\omega))$.
 - (ii) Let a function f(t) which has a Fourier transform $F(\omega)$. Prove, in the usual notation, that

i.
$$\mathcal{F}\left(f(t)e^{i\omega_0t}\right) = F(\omega - \omega_0),$$

ii.
$$\mathcal{F}(f(t-t_0)) = F(\omega)e^{-i\omega t_0}$$

b) Find the Fourier transform of the following functions

(i)
$$f(t) = \begin{cases} 0 & t < 0 \\ e^{-\alpha t} & t > 0, \alpha > 0 \end{cases}$$

- (ii) $f(t) = u_2(t)e^{-4t}$, where $u_2(t)$ is a unit step function.
- (iii) $f(t) = e^{-4(t+1)}$.

1

4

- c) Find the inverse Fourier transform of the function $F(\omega) = \frac{e^{2i\omega}}{2+3i}$.
- d) Consider the initial value problem

$$u_t - (\sin t)u_x = 0, \quad -\infty < x < \infty, \quad t > 0$$

$$u(x, 0) = \Phi(x), \quad -\infty < x < \infty.$$

- (i) Using the Fourier transforms, show that the problem can be converted to an ordinary differential equation with the corresponding initial condition.
- (ii) Show that, in the usual notation, $\hat{u}(\omega, t) = \hat{\Phi}(\omega, t)e^{i\omega i\omega\cos t}$, where \hat{u} and $\hat{\Phi}$ are the Fourier transforms of u and Φ respectively.
- (iii) Considering the inverse Fourier transform, show that the solution of the problem is given by $u(x,t) = \Phi(x+1-\cos t)$.
- 6. a) A series solution of the differential equation

$$(1 - x2)y'' - 2xy' + n(n+1)y = 0$$

is given by the Legendre polynomial

$$P_n(x) = \sum_{r=0}^{\lfloor n/2 \rfloor} \frac{(-1)^r (2n-2r)!}{2^n r! (n-r)! (n-2r)!} x^{n-2r},$$

where $\lfloor n/2 \rfloor = n/2$ if n is even and $\lfloor n/2 \rfloor = (n-1)/2$ if n is odd.

- (i) Use above formula to obtain the first three Legendre polynomilas $P_0(x)$, $P_1(x)$ and $P_2(x)$.
- (ii) Express the polynomial $4x^2 3x + 2$ in terms of Legendre polynomials.

b) The generating function of the Legendre polynomials $P_n(x)$ is defined by

$$\frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{n=0}^{\infty} P_n(t)t^n.$$

(i) By differentiatig the above formulae show that

$$\sum_{n=0}^{\infty} (x-t)P_n(x)t^n = \sum_{n=1}^{\infty} (1-2xt+t^2)nP_n(x)t^{n-1}.$$

(ii) Considering the coefficients of the powers of t^n show that

$$(2n+1)xP_n(x) - (n+1)P_{n+1}(x) - nP_{n-1}(x).$$

c) Let $P_n(x)$ be the Legendre polynomial defined through the Rodrigue's formula

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} ((x^2 - 1)^n)$$

and consider the result $P_n(x) = k_n x^n + Poly_{n-2}(x)$, where $Poly_{n-2}(x)$ is the polynomial of degree n-2 and k_n given by

$$k_n = \frac{(2n)!}{2^n(n!)^2}$$
 or equivalently by $k_n = \frac{2^n\Gamma(n+\frac{1}{2})}{n!\Gamma(\frac{1}{2})}$.

(i) Using one of the above formulae of k_n find the value α of the recursion relation

$$(n+1)P_{n+1}(x) = \alpha x P_n(x) - n P_{n-1}(x).$$

(ii) Using the Rodrigue's formula show that

$$P_{k}'(x) = \frac{1}{2^{k-1}(k-1)!} \frac{d^{k-1}}{dx^{k-1}} \left(((2k-1)x^{2}-1)(x^{2}-1)^{k-2} \right)$$

and hence find the formula $P_{n+1}^{\ \prime}(x)$.

(iii) Directly obtaining $P_{n-1}(x)$ from the derivative of Rodrigue's formula and using the result in part (ii) above show that

$$P_{n+1}'(x) - P_{n-1}'(x) = (2n+1)P_n(x).$$

.