University of Ruhuna

B.Sc.(General) Degree

Level II (Semester I) Examination - September 2017

Subject: Industrial Mathematics/Applied Mathematics Course Unit: $AMT211\beta/IMT211\beta$ (Fluid Dynamics)

Time: Two (02) Hours

Answer Four (04) Questions only.

1. a) In the usual notation, obtain the equation of continuity in the form $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{q}) = 0$ for a motion of a fluid.

If the fluid is incompressible, then deduce that $div \ \underline{q} = 0$.

b) Show that the motion given by

$$\underline{q}=\left(\frac{by-ax}{x^2+y^2},-\left(\frac{ay+bx}{x^2+y^2}\right),0\right)$$
 ;
where a,b are constant,

is a possible motion of an incompressible fluid.

- (i) Determine the equations of the relevant stream lines.
- (ii) Also test whether this motion is of the potential kind and if so find the velocity potential.

2. Derive in the usual notations, the Euler equation of motion $\underline{F} - \frac{1}{\rho} \underline{\nabla} P = \frac{d\underline{q}}{dt}$ for a perfect fluid moving under a force \underline{F} per unit mass and velocity \underline{q} . Hence, by using suitable conditions deduce that

$$\underline{\nabla}\left(\frac{P}{\rho} + \frac{1}{2}\underline{q}^2 + \Omega\right) = \underline{q} \wedge curl\underline{q},$$

where Ω is the scalar potential such that $\underline{F} = -\nabla \Omega$.

A quantity of liquid of density ρ occupies a length 2a of a straight tube of uniform small cross section. The liquid is under the action of a force kx per unit mass towards a fixed point O in the tube, where x is the distance from O.

Show that, when the nearest free surface is at a distance z from O, the pressure at a distance x exceed atmospheric pressure by

$$k\rho(x-z)\left(a-\frac{1}{2}x+\frac{1}{2}z\right).$$

3. An incompressible inviscid fluid of uniform density ρ is in irrotational motion. Show in the usual notation, the kinetic energy T of the fluid enclosed by a surface s is given by

$$T = -\frac{1}{2}\rho \int_{s} \phi \frac{\partial \phi}{\partial n} ds,$$

where \underline{n} is the outward unit normal vector to the fluid surface and ϕ is the velocity potential. A solid sphere of mass M and radius a moves in a uniform liquid which is at rest at infinity. If the sphere is moving with velocity \underline{u} , choosing the origin and axis suitably, find the velocity potential at the point $p(r, \theta)$.

Also find the kinetic energy of the liquid.

(Assume that the velocity potential of a sphere in the usual notation as $(Ar + Br^{-2})cos\theta$.)

- a) Obtain the velocity potential of a three dimensional source. 4.
 - b) Three dimensional sources of strength m_1 and m_2 are situated at points (2a,0,0) and (-2a,0,0) respectively.
 - (i) Find the resulting velocity potential $\phi(r,\theta)$ in spherical polar co-ordinates at a point $p = p(r, \theta)$ under the axial symmetry.
 - (ii) If $\frac{m_1}{m_2} = -\left(\frac{k-2a}{k+2a}\right)^2$; where k is a constant, show that there is no transport of fluid through $x^2 + y^2 = k^2$ on the plane $\theta = 0$.
 - (iii) Find the stagnation points on the plane $\theta = 0$.
 - a) A source and sink of equal strength m are placed at the points (2a,0) and (-2a,0)respectively in a two dimensional flow.
 - (i) Write down the complex potential of the system.
 - (ii) Now above system is placed in a fluid moving with the constant velocity $-u\underline{i}$. Write down the new complex potential of the system. (Here \underline{i} is the unit vector in the direction of positive x-axis.)
 - b) Let the complex potential of a 2-D motion is

$$W(z) = u\left(z + \frac{a^2}{z}\right) + iklog\left(\frac{z}{a}\right)$$
; where a, u and k are constants.

- (i) Show that $q^2 = u^2 \left(1 \frac{a^2}{z^2}\right)^2 + \frac{k^2}{z^2}$. Hence find the velocity at infinity in \overrightarrow{ox} direction.
- (ii) Find the stream function of |z| = a.
- (iii) Find the stagnation points.
- 6. State the Milne-Thomson Circle theorem and its extension.

A source and sink of equal strength m are placed at the points $\left(\pm \frac{a}{3}, 0\right)$ within a fixed circular boundary $|z| = \frac{2a}{3}$. Find the complex potential of the system. Show that the stream lines

$$48a^2y^2 - \lambda (9r^2 - 4a^2) = 3\left(r^2 - \frac{a^2}{9}\right)(9r^2 - 16a^2)$$
; where λ is a constant.