

University of Ruhuna

Bachelor of Science Special Degree Level II (Semester I) Examination

August 2017

Subject: Mathematics

Course Unit: MSP4114 (Ring and Field Theory)

Time: Three (03) Hours

Answer Four (04) Questions only

- 1. a) Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}$.

 Prove that R is a ring under matrix addition and matrix multiplication.
 - b) Is it possible to have a ring without unity which has a subring with unity? Justify your answer using the ring R in part a).
 - c) Let $R' = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ be a ring with respect to ordinary addition and multiplication. Prove that R' is an integral domain. Does R' form a field? Justify your answer.
- **2.** a) Show that the ideal $A = \{xf(x) + 2g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}$ is maximal in $\mathbb{Z}[x]$.
 - b) Let R be a ring. If M is an ideal of R such that $R \mid M$ is a field then show that M is maximal.
 - c) Let I and J be two ideals of the ring R. In the usual notation prove that

(i)
$$\sqrt{I} \cap \sqrt{J} = \sqrt{I \cap J}$$

(ii)
$$\sqrt{I} + \sqrt{J} \subseteq \sqrt{\sqrt{I} + \sqrt{J}}$$

d) Define a primary ideal.

Let I be an ideal of the ring R. If I is a primary ideal then show that every zero divisor of the quotient ring R is nilpotent.

- 3. a) Let R be a commutative ring and suppose px=0 for all $x\in R$, where p is a prime number. Show that the mapping $f:R\to R$ defined by $f(x)=x^p,\ x\in R$ is a homomorphism.
 - b) Let I and J be two ideals of a ring R. Prove that $(I+J) \mid I \cong J \mid I \cap J$.
 - c) Let R be a commutative ring with unity and $\phi: R \to \frac{R}{I} \times \frac{R}{J}$ such that $\phi(x) = (x+I, x+J)$ be a homomorphism. If I and J are comaximal ideals then show that ϕ is onto.

- **4.** a) Let R be a commutative ring with unity. $a \sim b$ denotes that "a is associate of b", where $a, b \in R$. Show that " \sim " is an equivalence relation.
 - b) Find the associates of 5+2i in \mathbb{C} , the ring of Gaussian integers.
 - c) Define a Euclidean ring. Let a, b be two non-zero elements of a Euclidean ring R. In the usual notation, show that
 - (i) if b is a unit of R, then d(ab) = d(a).
 - (ii) If b is not a unit of R, then d(ab) > d(a).
 - d) Show that in a Principal Ideal Domain, an element is prime if it is irreducible.
- 5. a) Find the greatest common divisor of $x^5 + 2x^3 + x^2 + 2x$ and $x^4 + x^3 + x^2$ in the field of residue classes modulo 3.
 - b) Prove that a polynomial f(x) over a field F has a multiple zero in some extension K iff f(x) and f'(x) have a comman factor of positive degree in F[x].
 - c) Let R be an integral domain and R[x], the set of polynomials over R be a ring. Show that R[x] is an integral domain.
 - d) Prove that if F is a field F[x] may not be a field.
- **6.** a) Show that in a Boolean ring R, every prime ideal $P(\neq R)$ is maximal.
 - b) Let I be an ideal of the ring R. If $R \mid I$ has no non-zero nilpotent elements then show that I is semiprime.
 - c) Prove that in a ring a non-zero idempotent element cannot be nilpotent.
 - d) Use contradiction method to show that $f(x) = x^3 2$ is irreducible over \mathbb{Q} . Describe the splitting field of $x^3 2$ over \mathbb{Q} .