

University of Ruhuna

Bachelor of Science General Degree Level III (Semester I) Examination

August 2017

Subject: Mathematics

Course Unit: MAT 311\(\beta\) /MPM 3113 (Group Theory)

Time: Two (02) Hours

3

Answer Four (04) Questions only

- 1. a) Consider the set $A = \mathbb{R} \times \mathbb{Z}$ with the operation * defined as $(x,n)*(y,m) = (x+2^ny,n+m)$; where $x,y \in \mathbb{R}$ and $n,m \in \mathbb{Z}$. Prove that (A,*) is a group.

 Is (A,*) an abelian group? Justify your answer.
 - b) Let $S = \mathbb{N} \cup \{0\}$ and let \circ be the binary operation defined on S by $x \circ y = |x y|$, for all $x, y \in S$. Does S form a group under the operation \circ ? Justify your answer.
- 2. a) Show that a necessary and sufficient condition that a non-empty subset H of a group G to be a subgroup is $a, b \in H \Rightarrow ab^{-1} \in H$.
 - b) Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, \ ad bc \neq 0 \right\}$ be a group under matrix multiplication.
 - (i) Write the inverse of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$.
 - (ii) Prove that $H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a = \pm 1, b \in \mathbb{Z} \right\}$ is a subgroup of G.
 - c) Let G be an abelian group. Prove that $H = \{x \in G \mid x = x^{-1}\}$ is a subgroup of G.
- 3. a) Let $G = \{1, 3, 7, 9\}$ and for $a, b \in G$ the operation \otimes_{10} defined by $a \otimes_{10} b = r$, $0 \le r < 10$; where r is the remainder when ordinary multiplication ab is divided by 10.
 - (i) Show that (G, \otimes_{10}) is a group.
 - (ii) Find the order of each element in G.
 - (iii) Is G cyclic? Justify your answer using part (ii).
 - b) (i) Show that if a cyclic group G is generated by an element a of order n, then a^m is a generator of G if and only if g.c.d.(m,n) = 1.
 - (ii) Write the elements of \mathbb{Z}_{11}^* , the set of non-zero integers modulo 11.

- (iii) It is given that 2 is a generator of the group $(\mathbb{Z}_{11}^*, \otimes_{11})$. Using part (i), find all the other generators of $(\mathbb{Z}_{11}^*, \otimes_{11})$.
- 4. Let G be a group and H be a subgroup of G. Show that if Ha and Hb are two right cosets of H in G, then either $Ha \cap Hb = \phi$ or Ha = Hb.
 - a) (i) Express the permutation $\rho = (1326)(124)(35)$ as a single cycle or as a product of disjoint cycles.
 - (ii) Find $o(\rho)$.
 - b) Let $\tau = \alpha^{-1}\beta^2$, where $\alpha = (123), \beta = (5432)$.
 - (i) Find the permutation τ .
 - (ii) Is τ an even permutation or an odd permutation? Justify your answer.
 - c) Let $H = \{I, (123), (132)\}$ be a subgroup of S_3 ; where $S_3 = \{I, (12), (13), (23), (123), (132)\}$ is a group under composition of permutations. Show that H is normal in S_3 by listing all its left and right cosets.
- 5. a) Let f be a mapping from $(\mathbb{Z}, +)$ to the group $G = \{1, -1\}$ under multiplication defined as

$$f(x) = \begin{cases} 1 & \text{; } x \text{ is even,} \\ -1 & \text{; } x \text{ is odd.} \end{cases}$$

Show that $f: \mathbb{Z} \to G$ is a homomorphism.

Is $f: \mathbb{Z} \to G$ an isomorphism? Justify your answer.

- b) Let G, G' be two groups and $f: G \to G'$ be a homomorphism.
 - (i) Define the kernel of f (Ker f).
 - (ii) Prove that f is one-one if and only if $\operatorname{Ker} f = \{e\}$, where e is the identity element of G.
 - (iii) Let $R = \left\{ \begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \mid x, y, z \in \mathbb{C} \right\}$ be a group under matrix addition and $S = \{(x,y) | x, y \in \mathbb{C}\}$ be a group under addition. Define $\theta : R \to S$ such that $\theta \begin{bmatrix} \begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \end{bmatrix} = (x,y)$.

Show that θ is a homomorphism.

Find Ker θ .

- **6.** a) For $a, b \in \mathbb{R}$, $a \neq 0$, define $\phi : \mathbb{R} \to \mathbb{R}$ by $\phi_{ab}(x) = ax + b$. Let $G = \{\phi_{ab} \mid a, b \in \mathbb{R}, a \neq 0\}$ and $N = \{\phi_{ab} \in G \mid a = 1, b \in \mathbb{R}\}$. Prove that N is a normal subgroup of G.
 - b) Let $f: G \to G'$ be an onto homomorphism and let $K = \operatorname{Ker} f$. For H', a subgroup of G', define $H = \{x \in G \mid f(x) \in H'\}$. Show that
 - (i) H is a subgroup of G.
 - (ii) $K \subseteq H$.
 - (iii) If H' is normal in G', then H is normal in G.