University of Ruhuna Bachelor of Science General Degree Level III (Semester I) Examination – September 2017

Subject: Mathematics Course Unit: MAT313 β

Time: Two (02) hours

Mathematical Statistics II

Answer 04 Questions only.

1.

1

(a) Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from a Poisson population and the probability mass function of Y is given by,

$$P(Y = y) = \frac{\lambda^{y} e^{-\lambda}}{y!}, y = 0,1,2,...$$

Estimate the parameter λ by using the method of moments.

Let *Y* be the number of paint defects found in a square meter section of a car body painted by a robot. The following data are obtained:

Estimate λ , assuming that Y has a Poisson distribution with parameter λ .

(b) Let X_1, X_2, X_3 and X_4 be a random sample of size 4 from the discrete distribution X such that,

$$P(X = x) = \begin{cases} \frac{\theta^{2x} e^{-\theta^2}}{x!} & \text{for } x = 0,1,2,\dots \\ 0 & \text{otherwise} \end{cases}$$

where $\theta > 0$. Find the maximum likelihood estimator of θ .

2. State the factorization theorem for a sufficient statistic.

Let $Y_1, Y_2, ..., Y_n$ be a random sample of size n from a distribution with $P(Y_i = 1) = p$ and

$$P(Y_i = 0) = 1 - p$$
, where p is unknown. Show that $\sum_{i=1}^{n} Y_i$ is a sufficient statistic for p.

State the Rao-Blackwell theorem in the usual notation.

Hence show that $\hat{p} = \overline{Y}$ is the minimum variance unbiased estimator (MVUE) for p, where

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} .$$

- (vi) Sketch the distributions of \overline{Y} under H_0 and H_1 in a diagram. Shade the regions relevant to α and β .
- (vii) If the sample size is increased, the standard deviation of \overline{Y} will decrease. What is the geometric effect of this on the two curves of the diagram in part (vi)?
- (viii) If the sample size is increased but the critical point is not changed, what will be the effect on α and β ?
- 5. Suppose that the distribution of the lifetime of TV tubes can be adequately modelled by an exponential distribution with mean θ , so that

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} & \text{for } x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Under the usual production conditions, the mean lifetime is 2000 hours but if a fault occurs in the process, the mean lifetime will drop to 1000 hours. A random sample of 20 tube lifetimes is to be taken in order to test the hypotheses $H_0: \theta = 2000$ versus $H_1: \theta = 1000$.

Use the Neyman-Pearson lemma to find the most powerful test with the significance level α .