UNIVERSITY OF RUHUNA # B.Sc. General Degree Level III (Semester I) Examination – August/September 2017 Subject: PHYSICS Course Unit: PHY 3114 Time: 02 hours & 30 minutes ### Part II # Answer FIVE (05) Questions only. | Charge of electron, $e = 1.6 \times 10^{-19} C$ | e their usual meaning) | |---|---| | Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$ | Boltzmann constant, $k_B = 1.38 \times 10^{-23} \text{JK}^{-1}$ | | Avogadro's number, $N_A = 6.022 \times 10^{23}$ | Mass of an electron, $m_e = 9.1 \times 10^{-31} \text{kg}$ | | Speed of light, $c = 3 \times 10^8 \text{ ms}^{-1}$ | Rydberg constant, $R = 2.2 \times 10^{-18} \text{J}$ | | $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ | 1 a.m.u = 1.66 x 10 ⁻²⁷ kg | ### PART A | A unit cell of a hypothetical metal is shown below. (a) To which crystal system does this unit cell belong? (b) What would this crystal structure be called? (c) Calculate the density of the metal, given that its atomic weight is 141 gmol⁻¹. (d) List the point coordinates for all atoms that are associated with the unit cell. (e) Write down the equation for separation between neighboring planes (interplanar spacing) in the crystal lattice. (f) Calculate the interplanar spacing for (220) set of planes in the metal. (g) When monochromatic X-rays having wavelength 0.1442 nm is incident on the (220) set of planes in the metal, compute the angle of diffraction for the first-order | [02-marks] [02-marks] [04-marks] [04-marks] [04-marks] | |--|--| | reflection. | [05-marks] | 2. (a) Derive an expression for the electrical conductivity of a metal. [10-marks] (b) Aluminum has three valence electrons per atom, atomic weight of 0.02698 kg/mol, density of 2700 kg/m³, and conductivity of 3.54 $10^7~\Omega/m$. Assume that all three valence electrons of each atom are free. (i) Calculate electron density of aluminum. [05-marks] (ii) Calculate electron mobility in aluminum. [05-marks] (iii)Estimate the mean collision time for an electron. [05-marks] #### PART B - 3. Consider a system of two particles in thermal equilibrium with a heat reservoir at absolute temperature T. Each particle can occupy in three different quantum states (s = 1, 2 & 3) with energies $0, \varepsilon$ and 2ε . - (a) If particles are distinguishable and obey Maxwell Boltzmann distribution, list all possible quantum states of the two particles by completing the following table. [07-marks] | G. C. | | | [07-marks] | | |---|-----------------|--------------|------------|---| | State of the system (r) | <i>s</i> = 1 | <i>s</i> = 2 | s = 3 | Total energy of the system $\mathbf{E_r}$ | | r=1 | | | 1. 21 | | | r = 2 | | | | | | r = 3 | | | | | | | | | | | | | | | | ļ | | | | | | | | Yrite down the parti | tion function C | | | | (b) Write down the partition function for the system described in part (a). [05-marks] (c) If particles are indistinguishable and obey Fermi Dirac statistics, list all possible quantum states of the two particles by completing the table shown in *part (a)*. [03-marks] (d) Write down the partition function for the system described in part (c). [03-mark (e) Find the mean energy at the limit of very high temperature of the system described in *part* (c). [07-marks] 4. The mean number of molecules per unit volume with the speed in the range between v and v + dv is given by Maxwell speed distribution, $F(v)dv = 4\pi n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{-\frac{mv^2}{2kT}} dv$. (a) Using the speed distribution, show that the most probable speed of a gas molecule moving in 3-dimention is $\tilde{v} = \sqrt{\frac{2kT}{m}}$ [06-marks] (b) If the mass of one mole of gas is $28\,g$, calculate the most probable speed of a gas molecule at room temperature. [05-marks] (c) For a monoatomic ideal gas, show that the mean number of molecules per unit volume whose energy lies in the range between E and E + dE is $$F(E)dE = 2\pi n \left(\frac{1}{\pi kT}\right)^{\frac{3}{2}} E^{\frac{1}{2}} e^{-\frac{E}{kT}} dE$$ [06-marks] (d) Using the distribution in part (c) or by some other means find the mean kinetic energy of a gas molecule. [04-marks] Note: $$\int_{0}^{\infty} E^{\frac{3}{2}} e^{-\frac{E}{kT}} dE = \frac{3}{4} \sqrt{\pi k^5 T^5}$$ (e) Explain why the average speed of a gas molecule is higher than the most probable speed of a molecule of the same gas. [04-marks] ### PART C 5. 1 (a) (i) State the de-Broglie equation for matter waves. [03-marks] (ii) Derive an equation for de-Broglie wavelength of an electron in terms of potential difference V through which it is accelerated. [07-marks] (iii)Televisions made in the 20th century used cathode ray tubes (or CRTs) to display images. In such a television, assume that an electron beam is accelerated through the television receiver tube by applying a potential difference of 12,000 V. Calculate the de-Broglie wavelength of the electron. [05-marks] (b) (i) State Heisenberg's uncertainty principle in mathematical form. [04-marks] (ii) A particle of mass 10⁻⁶ g has a speed of 1 ms⁻¹. The speed is uncertain by 0.01%. What is the minimum uncertainty in the position of the particle? [06-marks] 6. A particle of mass m and energy E travelling along x-axis from left to right approaches a finite potential barrier given below. $$V(x) = \begin{cases} 0, & x < 0 \\ V_0, & x \ge 0 \end{cases}$$ where $E < V_{\theta}$. (a) Solve the Schrödinger equation to obtain physically acceptable solutions for the particle. [07-marks] (b) Apply boundary conditions to find ratios of the relevant constants. [04-marks] (c) Find the probability density of the particle in the region x > 0. [05-marks] (d) An electron and a proton of same energy E approach a potential barrier of height Vwhich is greater than E. Do they have the same probability of getting through? Explain. [05-marks] (e) Use the results obtain in part (a) to discuss what happens to the particle if $V_0 \to \infty$. [04-marks]