CONTENT

	Page
Chapter 1	
Introduction	1
Chapter 2	
Fundamental Concepts and Theoretical Background 3	
2.1) History of Langmuir –Blodgett Films	3
2.2) Fabrication of LB Films	5
2.2.1) Surface Tension	5
2.2.2) Surfactants	6
2.2.3) Monolayer Forming Molecules	7
2.2.4) Insoluble Monolayers	9
2.2.5) Surface Pressure	10
2.2.6) Surface Pressure - Area Isotherms	11
2.2.7) Deposition of LB Films	14
2.2.8) Different Types of Deposited LB Films	16
2.2.9) Present status and Future prospects of Langmuir Blodgett	19
(LB) Films	
2.2.10) Goals of constructing purposely designed Monolayer assemblies	21
2.2.11) Organized Monolayers	24
2.3) The absorption of radiation by Molecules	27
2.4) Unsaturation and Benzonoid Character	29
2.4.1) Axis of polarizibility	31
2.5) Absorption Spectra	33
2.6) The Mechanism of the Dye Sensitised Photo Current	35-

.

;

 VI

Chapter 3	
Aggregation Control of di-octadecyl Merocyanine Dye Films by	39
Langmuir – Blodgett LB Technique	
3.1) Introduction	39
3.2) Experimental	40
3.3) Results And Discussion	43
3.3.1) Absorption Properties of C_{18} -Mero- C_{18} Dye Films	43
Prepared Under Zero Applied Potential	
3.3.2) Absorption Properties of C_{18} Mero- C_{18} Dye Films	45
Prepared Under Positive and Negative Biasing Potential	
3.3.3) Aggregation Control Of C_{18} -Mero- C_{18} by interlocking	51
R-C ₁₈ and Arachidic Acid	
3.3.4) The Variation Of Photocurrent Quantum Efficiency With the	56
Number Of Monolayer Of LB Films Of C ₁₈ -Mero-C ₁₈	
3.3.5) Photocurrent Action Spectra p-CuI sensitised C_{18} -Mero- C_{18}	58
Dye Films Prepared Under Positive and Negative	
Applied Potential	
3.3.6) Photocurrent Enhancement Of p-CuI Sensitised Interlocked	60
C_{18} -Mero- C_{18} + R- C_{18} (1:1) Mixture LB Films	
3.4) Conclusion	65
3.5) References	66

•

VII