CHAPTER 1 - INTRODUCTION AND REVIEW OF LITERATURE

1.1 Use of plants in medicine 2
 1.1.1 Ayurveda 3
 1.1.2 Ayurveda and liver disease 4
 1.1.3 Allopathic medicine and liver disease 5
 1.1.3.1 Biochemical functions of the liver 5
 1.1.3.2 Classification of liver disease 7
 1.1.3.3 Assessment of liver damage 8
 1.1.3.4 Chemically induced hepatotoxicity 9
 1.1.3.4.1 Biotransformation of xenobiotics 9
 1.1.3.4.2 Hepatotoxicity 11
 1.1.3.4.3 Chemicals used in the present study 13
 1.1.3.4.3.1 Carbon tetrachloride induced hepatotoxicity 13
 1.1.3.4.3.2 Paracetamol induced hepatotoxicity 17
1.1.4 Medicinal plants used in Sri Lanka to treat liver diseases 21
1.1.5 Plants with experimentally confirmed hepatoprotective activity 25
1.1.6 Active principles isolated as hepatoprotective agents 28

1.2 Role of antioxidants in liver disease 30
1.2.1 Introduction 30
1.2.2 Reactive oxygen and mechanisms of liver injury 31
1.2.3 Endogenous enzymatic defense mechanisms 32
1.2.4 Endogenous non-enzymatic defense mechanisms 33
1.2.5 Antioxidants in paracetamol induced liver injury 34
1.2.6 Plants with experimentally confirmed antioxidative activity 35

1.3 Objectives of the study 38

1.4 Botanical features and medicinal uses of medicinal plants under study 39
1.4.1 Asteracantha longifolia 39
1.4.2 Asparagus falcatus 40
1.4.3 Epaltes divaricata 41
1.4.4 Vetiveria zizanioides 42
1.4.5 Corriandrum sativum 43

CHAPTER 2 - MATERIALS AND METHODS 44
2.1 General 45
2.2 Experimental model 45
2.3 Preparation of plant extracts 45
2.4 Dosage and administration of drugs
2.5 Induction of liver damage
2.6 Collection of blood for enzyme assays
2.7 Collection of liver tissue
2.8 Preparation of the cytosolic fraction
2.9 Estimation of serum alanine aminotransferase activity (E.C.2.6.1.2)
2.10 Estimation of serum aspartate aminotransferase activity (E.C.2.6.1.1)
2.11 Estimation of serum alkaline phosphatase activity (E.C.3.1.3.1)
2.12 Estimation of liver reduced glutathione concentration
2.13 Estimation of total proteins
2.14 Estimation of lipid peroxidation
2.15 Estimation of glutathione reductase activity (E.C.1.6.4.2)
2.16 Estimation of glutathione peroxidase activity (E.C.1.11.1.9)
2.17 Estimation of glutathione-S-transferase activity (E.C.2.5.1.18)
2.18 Estimation of haemoglobin concentration
2.19 Estimation of red blood cell count
2.20 Estimation of white blood cell count
2.21 Estimation of the packed cell volume
2.22 Histopathological assessment of liver damage
2.23 Statistical analysis
CHAPTER 3 – A PRELIMINARY INVESTIGATION OF THE
HEPATOPROTECTIVE EFFECT OF PLANT EXTRACTS

3.1 Introduction

3.2 Experiments

3.2.1 Effects of plant extracts on carbon tetrachloride induced hepatocellular damage

3.2.2 Effects of plant extracts on paracetamol induced hepatocellular damage in comparison with N-acetyl cysteine

3.3 Results

3.4 Conclusion

CHAPTER 4 – ANTIOXIDATIVE EFFECT OF PLANT EXTRACTS
PROTECTIVE AGAINST CHEMICALLY INDUCED HEPATOTOXICITY

4.1 Introduction

4.2 Experiments

4.2.1 Effects of plant extracts on CCl₄ mediated changes in antioxidant status of the liver

4.2.2 Effects of plant extracts on paracetamol mediated changes in antioxidant status of the liver

4.3 Results

4.4 Conclusion

CHAPTER 5 – STUDIES ON THE TOXICITY OF PLANT EXTRACTS
5.1 Introduction 132
5.2 Experiments 133
 5.2.1 Effects of plant extracts on liver enzyme activities 133
 5.2.2 Effects of plant extracts on various body organs 133
 5.2.3 Effects of plant extracts on haematological parameters 133
 5.2.4 General observations 134
5.3 Results 134
5.4 Conclusion 143

CHAPTER 6 – DISCUSSION 144
REFERENCES 165
PUBLICATIONS 197
List of Tables

Table 1:	List of plants used in Sri Lanka to treat different types of liver disorders	21
Table 2:	Plants with experimentally confirmed hepatoprotective activity (In vivo studies.)	25
Table 3:	Plants with experimentally confirmed hepatoprotective activity (In vitro studies)	26
Table 4:	Most commonly used hepatoprotective plants in herbal formulations	27
Table 5:	Plants with proven antihepatotoxic activity and active principles isolated from them	28
Table 5A:	Endogenous antioxidant enzymes	32
Table 6:	Plants with experimentally confirmed antioxidant activity (In vivo studies)	36
Table 7:	Plants with experimentally confirmed antioxidant activity (In vitro studies)	36
Table 8:	Assay medium for GSH standard curve	55
Table 9:	Assay medium for the preparation of standard curve for total protein estimation	59
Table 10:	Assay medium for haemoglobin standard curve	67
Table 11:	Effect of plant extracts on serum enzyme activities and liver	Xi
Table 12: Effect of plant extracts on serum enzyme activities and liver GSH against CC14 induced hepatotoxicity

Table 13: Effect of plant extracts on CC14 mediated changes in antioxidant status of the liver

Table 14: Effect of plant extracts on paracetamol mediated changes in antioxidant status of the liver

Table 15: Effect of plant extracts on CC14 mediated changes in lipid peroxidation of the liver

Table 16: Effect of plant extracts on paracetamol mediated changes in lipid peroxidation of the liver

Table 17: Effect of plant extracts on serum enzyme activities after the administration for one month

Table 18: Effect of plant extracts on haematological parameters after the administration for one month
List of figures

Figure 0A: Organization of the liver tissue 12A
Figure 1: Mechanism of action of carbon tetrachloride 15
Figure 1A: Lipid peroxidation- mechanism 16A
Figure 2: Mechanism of action of paracetamol 19
Figure 3: Effect of dosage of paracetamol on different experimental animals 20
Figure 4: Antioxidant function of glutathione system 33
Figure 5: Asteracantha longifolia plant 39
Figure 6: Asparagus falcatus plant 40
Figure 7: Epaltes divaricata plant 41
Figure 8: Vetiveria zizanioides plant 42
Figure 9: Corriandrum sativum plant 43
Figure 10: Standard curve for the assay of alanine aminotransferase 50
Figure 11: Standard curve for the assay of aspartate aminotransferase 52
Figure 12: Standard curve for the assay of reduced glutathione level 56
Figure 13: Standard curve for the assay of total proteins 60
Figure 14: Standard curve for the assay of haemoglobin concentration 69
Figure 14A: Experimental design- CCl₄ induced hepatotoxicity 82A
Figure 14B: Experimental design- paracetamol induced hepatotoxicity 83A
Figure 15: Effect of CCl₄ and Asteracantha longifolia on serum enzyme activities and liver reduced glutathione level 90
Figure 16: Effect of CCl₄ and *Epaltes divaricata* on serum enzyme activities and liver reduced glutathione level

Figure 17: Effect of CCl₄ and *Asparagus falcatu* on serum enzyme activities and liver reduced glutathione level

Figure 18: Effect of CCl₄ and *Vetiveria zizanioides* on serum enzyme activities and liver reduced glutathione level.

Figure 19: Effect of CCl₄ and *Corriandrum sativum* on serum enzyme activities and liver reduced glutathione level

Figure 20: Liver histology, 7 days after the administration of distilled water and plant extracts respectively

Figure 21: Liver histopathology, 24 h after the administration of CCl₄ (Post-treatment)

Figure 22: Liver histopathology, 24 h after the administration of CCl₄ (Pre-treatment)

Figure 23: Liver histopathology, 4 days after the administration of CCl₄ (Post-treatment)

Figure 24: Liver histopathology, 4 days after the administration of CCl₄ (Pre-treatment)

Figure 25: Effect of paracetamol and *Asteracantha longifolia* on serum enzyme activity and liver reduced glutathione level

Figure 26: Effect of paracetamol and *Epaltes divaricata* on serum enzyme activity and liver reduced glutathione level

Figure 27: Effect of paracetamol and *Asparagus falcatus* on serum
Enzyme activity and liver reduced glutathione level

Figure 28: Effect of paracetamol and Vetiveria zizanioides on serum

Figure 29: Effect of paracetamol and Corriandrum sativum on serum

Figure 30: Liver histopathology of distilled water, paracetamol and N-acetyl cysteine treated mice

Figure 31: Liver histopathology, 4 h after the administration of paracetamol (Post-treatment)

Figure 32: Liver histopathology, 4 h after the administration of paracetamol (Pre-treatment)

Figure 33: Effect of Asteracantha longifolia and CCl4 on antioxidant enzyme activities and lipid peroxidation

Figure 34: Effect of Asparagus falcatus and CCl4 on antioxidant enzyme activities and lipid peroxidation

Figure 35: Effect of Vetiveria zizanioides and CCl4 on antioxidant enzyme activities and lipid peroxidation

Figure 36: Effect of Asteracantha longifolia and paracetamol on antioxidant enzyme activities and lipid peroxidation

Figure 37: Effect of Asparagus falcatus and paracetamol on antioxidant enzyme activities and lipid peroxidation

Figure 38: Effect of Vetiveria zizanioides and paracetamol on antioxidant enzyme activities and lipid peroxidation
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 39:</td>
<td>Effect of plant extracts on liver enzyme activities and haematological parameters, one month after administration</td>
</tr>
<tr>
<td>Figure 40:</td>
<td>Histology of liver tissue one month after the administration of plant extracts</td>
</tr>
<tr>
<td>Figure 41:</td>
<td>Histology of kidney tissue one month after the administration of plant extracts</td>
</tr>
<tr>
<td>Figure 42:</td>
<td>Histology of lung tissue one month after the administration of plant extracts</td>
</tr>
<tr>
<td>Figure 43:</td>
<td>Histology of heart tissue one month after the administration of plant extracts</td>
</tr>
<tr>
<td>Figure 44:</td>
<td>Histology of intestine tissue one month after the administration of plant extracts</td>
</tr>
<tr>
<td>Figure 45:</td>
<td>Histology of spleen tissue one month after the administration of plant extracts</td>
</tr>
</tbody>
</table>