LIST OF CONTENTS

Contents	Page
TITLE	
ABSTRACT	i
ACKNOWLEDGEMENT	iii
LIST OF CONTENTS	v
LIST OF FIGURES	x
LIST OF TABLES	xiii
ABBREVIATIONS	xv
CHAPTER 01: INTRODUCTION	1
1.1. Introduction	1
1.2. Objectives	5
CHAPTER 02: LITERATURE REVIEW	6
2.1. Rice	6
2.1.1. Botanical classification of rice	6
2.1.2. Rice Genome	6
2.2. Brown Planthopper (BPH)	7
2.2.1. Biology of Nilaparvata lugens	7
2.2.2. Dispersal and population growth of BPH	9
2.2.3. Damaged caused by BPH and symptoms	9
2.2.3.1. Damage symptoms at different stages of the rice plant	10
2.2.3.2. When damage is important	10
2.2.4. Signs for the presence of BPH	10
2.2.5. Factors favoring rapid development of BPH in rice fields	11
2.2.6. The occurrence of BPH	11
2.2.7. Economic importance of BPH damage	12
2.2.7.1. Economic Threshold Level (ETL) of BPH	12
2.2.8. Host range of BPH	12
2.2.9. Management of BPH	12
2.2.10. Emergence of virulent biotypes and continuous BPH out break	ts in Sri
Lanka	13
2.3. Wild rice as a source of BPH resistance	13
2.3.1. Wild relatives of rice	13

2.3.2. Morphology of Oryza nivara	14
2.3.3. Plant morphology and BPH resistance	14
2.3.4. Importance of O. nivara as a source of BPH resistance	14
2.4. Development of BPH resistant rice varieties	14
2.4.1. BPH resistant genes in rice genome	15
2.5. Biotypes of BPH	18
2.6 BPH infestation mechanism of a rice crop	20
2.6.1. Mechanisms of BPH resistance	20
2.6.1.1.Antixenosis	21
2.6.1.1.1. Oviposition	21
2.6.1.2. Antibiosis	21
2.6.1.3. Tolerance	22
2.7. Screening for BPH resistance	22
2.7.1. The standard seed box screening test	22
2.7.2. The standard honeydew test	23
2.8. Molecular Screening for BPH resistance and characterization	23
2.8.1. Importance of molecular genetics	23
2.8.2. Genetic Markers	23
2.8.3. Marker Assisted Selection (MAS)	24
2.8.4. Types of genetic markers	24
2.8.4.1. Morphological markers	25
2.8.4.2. Biochemical markers	25
2.8.4.3. DNA based molecular markers	25
2.8.4.3.1. Non PCR based markers	26
2.8.4.3.2. PCR based markers	27
2.8.5. Criteria for selecting most suitable marker for local use	29
2.8.6. Polymerase Chain Reaction (PCR)	29
2.8.7. Restriction Digestion	30
2.8.8. Gel electrophoresis	30
2.8.8.1. Agarose gel electrophoresis	30
2.8.8.2. Polyacrylamide gel electrophoresis (PAGE)	32
2.9. Data Analysis	34
2.9.1. Analysis of Variance (ANOVA)	34

2.9.2. F statistics	34
2.9.3. Principal Component Analysis (PCA)	35
2.9.4. The Estimation of Genetic Distance	35
CHAPTER 03: MATERIALS AND METHODOLOGY	36
3.1. Materials	36
3.1.1. Plant materials	36
3.1.2. Other materials	37
3.2. Methodology	37
3.2.1. BPH Bioassay	37
3.2.1.1. Standard Seed Box Screening test (SSBS)	37
3.2.1.2. Standard honeydew test	39
3.2.1.3. Studies on the variation of virulence of three BPH populations	43
3.2.2. Antixenosis	43
3.2.3. Oviposition	44
3.2.4. Antibiosis	47
3.2.4.1. Percentage of nymphal survival	47
3.2.4.2 Number of days until death of seedlings	48
3.2.5 Molecular screening for Brown planthopper resistance	48
3.2.5.1 DNA extraction	48
3.2.5.2 DNA Conformation	48
3.2.5.3 Polymerase Chain Reaction (PCR)	49
3.2.5.3.1 PCR amplification with RG 457 FL/RL primers (Bph 10)	52
3.2.5.3.1.1 Polymerase Chain Reaction	52
3.2.5.3.1.2 Confirmation of PCR products	53
3.2.5.3.1.3 Restriction digestion of RG 457 PCR products	53
3.2.5.3.2 PCR amplification with KAM 4 primer (bph 2)	54
3.2.5.3.2.1 Polymerase Chain Reaction	54
3.2.5.3.2.2 Confirmation of PCR products	54
3.2.5.3.3 PCR amplification with AJ096 primer (F/R) (Bph 13)	55
3.2.5.3.3.1 Polymerase Chain Reaction	55
3.2.5.3.3.2 Confirmation of PCR products	55
3.2.5.3.4 PCR amplification with RM 190 primer (F/R) (Bph 3)	56
3.2.5.3.4.1 Polymerase Chain Reaction	56

3.2.5.3.4.2 Polyacrylamide Gel Electrophoresis (PAGE)	56
3.2.5.3.5 PCR amplification with RM 589 primer (F/R) (Bph 3)	59
3.2.5.3.5.1 Polymerase Chain Reaction	59
3.2.5.3.5.2 Polyacrylamide Gel Electrophoresis (PAGE)	59
3.2.5.3.6 PCR amplification with 7312.T4A primer (F/R) (bph18)	60
3.2.5.3.6.1 Polymerase Chain Reaction	60
3.2.5.3.6.2 Confirmation of PCR products	61
3.2.5.3.6.3 Restriction digestion of PCR products	61
3.2.6 Morphological and molecular characterization of tested accessions	s 62
3.2.6.1 Morphological characterization	62
3.2.6.2 Estimation of Genetic variation of tested accessions	64
3.2.6.2.1 DNA extraction	65
3.2.6.2.2 DNA Confirmation	65
3.2.6.2.3 Estimation of genetic variation of test accessions by SSR	L
Markers	65
3.2.6.2.3.1 Polymerase Chain Reaction	66
3.2.6.2.3.2 Polyacrylamide Gel Electrophoresis	66
3.2.6.2.3 .3 Data analysis	67
CHAPTER 04: RESULTS AND DISCUSSION	68
4.1 Standard Seed Box Seedling test (SSBS)	68
4.2 Standard Honeydew test	71
4.2.1 Honeydew productions in tested accessions and varieties	71
4.2.2 Virulence of BPH populations	72
4.3 Variation in the levels of virulence in BPH populations	73
4.4 Antixenosis	74
4.4.1 Preference of nymphs to settled on tested accessions at seedling sta	age 74
4.5 Pattern of Oviposition	78
4.6 Antibiosis	79
4.6.1 Percentage of nymphal survival	79
4.6.2 Number of days until death of single seedling	80
4.7. Correlations	81
4.8 Molecular screening for Brown planthopper resistance	83
4.8.1 Confirmation of raw DNA	83

4.8.2 PCR amplification using KAM 4 primer (<i>bph2</i>)	84
4.8.3 PCR amplification using AJ 096 primer (Bph13)	85
4.8.4 PCR amplification using RG 457 FL/RL primer (Bph10)	86
4.8.5 PCR amplification with RM190 FL/RL and RM 589 primers (Bph 3)	87
4.8.6 PCR amplification with 7312.T4A FL/RL primer (bph18(t)	88
4.9 Morphological and molecular characterization of test accessions	91
4.9.1 Morphological characterization	91
4.9.1.1 Quantitative Traits	91
4.9.1.2 Qualitative Traits	98
4.9.2 Estimation of genetic diversity of test accessions	102
CHAPTER 05: CONCLUSIONS AND RECCOMMENDATIONS	109
REFFERENCES	110
APPENDIX	120

LIST OF FIGURES

Title	Page
Figure 2.1 Life cycle of the Brown planthopper	7
Figure 2.2 Eggs of Nilaparvata lugens	8
Figure 2.3 Nymphal stages of Nilaparvata lugens	8
Figure 2.4 a. Macropetrous brown planthopper; b. Brachypterous brown planthopper	r 9
Figure 2.5 Hopper burn symptom in rice field	10
Figure 2.6 a. Hopper burn symptom in rice field, b. presence of nymphs and adult	
near the plant base, c. Honeydew (HD) and sooty moulds (SM) on plant bases	11
Figure 2.7 Standard seed box screening test	22
Figure 3.1 A. Test plants arranged for conventional seed box screening, B. Test	
plants ready to score	38
Figure 3.2 Three BPH populations reared on separate cages	40
Figure 3.3 Two months old test varieties	40
Figure 3.4 Bromocresol green treated filter papers	41
Figure 3.5 A. Test plants with feeding chamber, B: Placing filter paper with in test	
plant	41
Figure 3.6 A. BPH females keeping under starvation, B: Placing BPH females within	n
feeding chamber	41
Figure 3.7 60 treatments arranged in one replicate	42
Figure 3.8 A, B: Blue spots on filter paper	42
Figure 3.9 A: 10 day old plants were kept in insect proof cages, B: Settled BPH	
nymphs on tested accessions	42
Figure 3.10 Counting settled nymphs on test accessions	44
Figure 3.11 Planted test accessions in a circular fashion	44
Figure 3.12 A: Five weeks old test plants, B: Prepared plants for the test	45
Figure 3.13 Test plants infested with BPH covered by mylar cage	46
Figure 3.14 BPH eggs under light microscope	46
Figure 3.15 Newly emerged BPH nymphs on test plants	47
Figure 3.16 Test tubes covered with cotton wool	47
Figure 3.17 Germinating seeds on wetted tissue papers	62
Figure 3.18 Test plants grown under screen house condition	62

Figure 4.1 Variation of mean damage score in test plants when plants infested with

Kegalle population	68
Figure 4.2 Variation of mean damage score in test plants when plants infested with	
Bombuwela population	68
Figure 4.3 Variation of mean damage score in test plants when plants infested with	
Bathalagoda population	69
Figure 4.4 Mean area representing honeydew excretion (mm ²) in tested accessions and varieties	71
Figure 4.5 Mean area (mm ²) representing honeydew excretion by 3 BPH populations	
when fed on tested accessions and varieties	72
Figure 4.6 Interaction between BPH populations and tested accessions and varieties	73
Figure 4.7 Mean no of insects settled on tested accessions and varieties	75
Figure 4.8 Mean no of BPH nymphs settled in each population	75
Figure 4.9 Mean no of BPH nymphs settled during study period	76
Figure 4.10 Interaction effect between no of settlers of each BPH population and test	
plants	76
Figure 4.11 Interaction effect between time taken to settle and test plants	77
Figure 4.12 A, B, C, D, E, F. No of eggs laid by BPH females in test accessions and	
varieties under six different arrangements	78
Figure 4.13 Percentage of nymphs become adults on test plants	·80
Figure 4.14 Number of days until death of seedlings	81
Figure 4.15 A, B. Raw DNA visualized under 0.8 % agarose gel	83
Figure 4.16 PCR amplification of DNA of tested rice entries by KAM 4 primer	
followed by electrophoration in 3% agarose gel	84
Figure 4.17 PCR amplification of DNA of tested rice entries by AJ 096 primer	
followed by electrophoration in 3% agarose gel	85
Figure 4.18 PCR amplification of DNA of tested rice entries by RG 457 FL/RL prim	er
followed by electrophoration in 3% agarose gel (A1,A2) and digested products by	
restriction enzyme <i>Hinf1</i> followed by electrophoration in 3% agarose gel(B1,B2)	86
Figure 4.19 PCR amplification of DNA of tested rice entries by RM190 FL/RL	
primers followed by electrophoration in 6 % denaturing silver stained PAGE	87
Figure 4.20 PCR amplification of DNA of tested rice entries by RM589 FL/RL	
primers followed by electrophoration in 6 % denaturing silver stained PAGE	88

• •

Figure 4.21 PCR amplification of DNA of tested rice entries by 7312.T4A FL/RL	
primers followed by electrophoration in 3% agarose gel (A) and digested products	
of (A) by restriction enzyme <i>Hinf1</i> followed by electrophoration in 4.5 %	
denaturing silver stained PAGE (B)	89
Figure 4.22 O. nivara 9864 accession	93
Figure 4.23 Dendrogram obtained through Hierachical Cluster Analysis	96
Figure 4.24 Qualitative traits showing similarity among test plants A: Green leaf bla	ade,
B: Pale green auricle, C: 2-cleft ligule, D: Compact panicle	98
Figure 4.25 Statistics of qualitative traits showing variation among accessions	99
Figure 4.26 Long and fully type awn in O. nivara	100
Figure 4.27 variation observed in culm angle among test plants	100
Figure 4.28 variation observed in flag leaf angle among test plants	101
Figure 4.29 variation observed in basal leaf sheath color among test plants	101
Figure 4.30 PCR amplification of DNA of tested rice entries amplified by RM 85	
primer followed by electrophoration in 6% urea PAGE	102
Figure 4.31 PCR amplification of DNA of tested rice entries amplified by RM 11	
primer followed by electrophoration in 6% urea PAGE	103
Figure 4.32 PCR amplification of DNA of tested rice entries amplified by RM 19	
primer followed by electrophoration in 6% urea PAGE	104
Figure 4.33 Dendrogram Based Nei's (1972) Genetic distance: Method = UPGMA	
modified from NEIGHBOR procedure of PHYLIP Version 3.5	105

LIST OF TABLES

Title	Page
Table 2.1 Genetic resources for Brown planthopper resistance	16
Table 2.2 Biotypes of the Brown planthopper	19
Table 2.3 Differential response between biotypes of brown planthopper and genes	
for resistance in rice	20
Table 2.4 Range of separation in gels containing different amounts of agarose	31
Table 2.5 DNA size migration with sample loading dyes	32
Table 2.6 Efficient separation of linear DNA molecules with the concentration of	
polyacrylamide gels	33
Table 2.7 Dye migration rates	33
Table 3.1 Description of O. nivara accessions used for the study	36
Table 3.2 Description of BPH populations used for the study	38
Table 3.3-A Standard evaluation system of BPH resistance in rice	39
Table 3.3-B Standard grading system of BPH resistance in rice	39
Table 3.4 Planting arrangement of test plants	45
Table 3.5 Primers used for molecular screening of BPH resistance	51
Table 3.6 Components of the cocktail mixture for RG 457 FL/RL primers	52
Table 3.7 Components of the restriction digestion mixture	53
Table 3.8 Components of the cocktail mixture for KAM 4 primer	54
Table 3.9 Components of the cocktail mixture for AJ096 primer	55
Table 3.10 Components of the cocktail mixture for RM 190 primer	56
Table 3.11 Components of the cocktail mixture for RM 589 primer	59
Table 3.12 Components of the cocktail mixture for 7312.T4A primer	60
Table 3.13 Components of the restriction digestion mixture	61
Table 3.14-A Quantitative morphological traits measured	63
Table 3.14-B Qualitative morphological traits measured	64
Table 3.15 Description of primers used for the estimation of genetic variation	65
Table 3.16 Components of the cocktail mixture for RM 85, RM 11 and RM 19 prime	r
pairs	66
Table 4.1 Differential response of to test accessions and varieties to BPH Populations	s 70
Table 4.2 Reaction of standard test varieties against three BPH populations	74

Table 4.3 Pearson Correlations among nymphal preference, survival and mean	
damage score	81
Table 4.4 Summary of molecular marker screening for Brown planthopper resistance	90
Table 4.5-A, B Means of the quantitative morphological traits recorded in tested	
O. nivara accessions and varieties obtained through ANOVA	91
Table 4.6 Principal component analysis (PCA) showing the descriptive statistics of	
effective variables	94
Table 4.7 Eigen values and cumulative % variance explained by selected four princip	al
components	94
Table 4.8 Loading of quantitative characteristics into principal components (PCs) wit	h
scores	95
Table 4.9: Genotypes of 6 SSR loci for each sample 1	104
Table 4.10: Length between points of the dendrogram based on Nei's genetic	
distance	107
Table 4.11: Nei's Original Measures of Genetic Identity and Genetic distance	108