

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 4 Examination in Engineering: February 2020

Module Number: EE4306

Module Name: Engineering Electromagnetism

[3 Hours]

[Answer all questions, each question carries ten marks]

(Permittivity of free space $\epsilon_0=10^{-9}\,/\,(36\pi)$ F/m and Permeability of free space $\mu_0=4\pi\times10^{-7}$ H/m)

- Q1 a) An electromagnetic plane wave in free space with power density of $3 W/m^2$ impinges normally on a lossless dielectric boundary with a reflection coefficient of 0.375.
 - i. What is the intrinsic impedance of the dielectric medium?
 - ii. What is the power density of the wave transmitted into dielectric?

[5 Marks]

- b) An electromagnetic plane wave of $50\,MHz$ is propagating in the medium of aluminum $\varepsilon = \varepsilon_0$, $\mu = \mu_0$ and $\sigma = 3.5 \times 10^7\,Sm^{-1}$. Calculate the following the parameters for the medium at $50\,MHz$.
 - i. The propagation constant γ
 - ii. The skin depth δ
 - iii. The wave velocity u

[5 Marks]

Q2 a) i) State the Divergence theorem.

[2 Marks]

ii) State the Ampere's circuit law.

[2 Marks]

- b) What do you mean by boundary condition analyze in electrostatic and electromagnetic field? [2 Marks]
- c) Asymmetric core of steel shown in Figure Q2 has the permeability of $1000\,\mu_0$ has a uniform cross section of 4 cm^2 except in the central leg with cross section of 6 cm^2 . The other dimensions of the core have been indicated in the figure. The left leg has a coil with 300 turns carrying a 10 A of current and the right

leg has a with coil 200 turns carrying a 5 A of current. Determine the flux density in each leg. [4 Marks]

Q3 In spherical coordinated system (r, θ, ϕ) , electrical field component in free space due to a Hertzian dipole placed at the origin along the Z-axis can be expressed with their usual notation as given by the following expressions.

$$E_r = \frac{2I.dl.}{4\pi} \eta_0 \beta_0^2 \cos \theta \left(\frac{1}{\beta_0^2 r^2} - \frac{j}{\beta_0^3 r^3} \right) e^{-j\beta_0 r}$$

$$E_{\theta} = \frac{I.dl.}{4\pi} \eta_0 \beta_0^2 \sin \theta \left(\frac{j}{\beta_0 r} + \frac{1}{\beta_0^2 r^2} - \frac{j}{\beta_0^3 r^3} \right) e^{-j\beta_0 r}$$

 $E_{\phi} = 0$, where η_0 , I, dl and β_0 are the intrinsic impedance of free space, the sinusoidal current in the Hertzian dipole, the length of the Hertzian dipole and the phase constant in free space, respectively.

- a) Obtain the expressions for the magnetic field components using Maxwell's equations. [2.5 Marks]
- b) Obtain the expressions for the electrical and magnetic far-field components of the Hertzian dipole. [2.5 Marks]
- Obtain the average power flow density vector (Poynting vector) of the propagating far-field components. [2.5 Marks]
- d) Hence obtain the total radiated power of the Hertzian dipole. [2.5 Marks]
- Q4 a) What is electromagnetic compatibility?

[1 Mark]

b) Define electromagnetic interference(EI)

[1 Mark]

c) How do you improve immunity of the electronic based system against EI?

[2 Marks]

d) How do you assure electromagnetic compatibility of the system?

[2 Marks]

- e) Discuss the requirements of international standard related to electromagnetic signals or fields control. [4 Marks]
- Q5 A filamentary current I_2 of length L is separated by distance b from a parallel and infinite long wire supporting direct current I_1 as shown in Figure Q5.

- a) Using Biot-Sarvart law, write down the magnetic flux density at point P due to current element δl carrying the current I_1 . [3Marks]
- b) Hence, obtain the magnetic flux density at point P due to infinite long wire supporting the direct current I_1 . [4 Marks]
- c) Find the force on the wire with length L due to the magnetic field generated by the infinitely long wire carrying the direct current I_1 . [3 Marks]

Figure Q2

Figure Q5