

# **UNIVERSITY OF RUHUNA**

### **Faculty of Engineering**

End-Semester 6 Examination in Engineering: February 2020

Module Number: EE6205

**Module Name: Energy and Environment** 

### [Three Hours]

[Answer all questions, each question carries 12 marks]

Q1. a) i) Name four forms of energy supply in Sri Lanka.

- ii) What are the three major hydro power complexes in Sri Lanka? Name two power plants in each complex.
- iii) Briefly discuss three strategies recently used or proposed by the government of Sri Lanka to reduce the cost and environmental impact of electricity generation.
- iv) Write a small note about Uma Oya hydro power project.

[6.0 Marks]

- b) Explain the following energy-economy indicators.
  - i) Energy intensity index
  - ii) Self-price elasticity of demand
  - iii) Income elasticity of demand

[2.0 Marks]

- c) i) What is a non-conventional power plant?
  - ii) State three non-conventional power plant types used for electricity generation in Sri Lanka.
  - iii) Explain the operation of a Proton-Exchange Membrane (PEM) fuel cell.

[4.0 Marks]

- Q2. a) i) Briefly discuss how Demand Side Management (DSM) plans are being served in Sri Lanka.
  - ii) State the factors to be considered when implementing a day lighting system.
  - iii) A 15 hp centrifugal water pump operates 1000 hours annually at its rated speed. A throttling valve is used to regulate the water flow to 40% on average. An annual electrical energy saving of 8703 kWh was achieved when the throttling valve was replaced with an Adjustable Speed Drive (ASD) having an efficiency of 92%. Determine the efficiency of the pump if the motor is properly sized for the application with a load factor of 75%. Clearly state any assumption you make.

[6.0 Marks]

- b) i) What is a walk-through energy audit?
  - ii) Name two types of Energy Service Companies (ESCOs) registered with Sri Lanka Sustainable Energy Authority (SLSEA) and briefly explain the services provided by each type.
  - A 400 V, 50 Hz, 3-phase AC generator supplies power to following loads.
    - Load 1: Pure resistive 3-phase load of 3 kW
    - Load 2: 3-phase induction motor drawing a line current of 15 A at 0.67 lagging power factor
    - Load 3: 3-phase synchronous motor consuming 2 kW power at 0.9 leading power factor

A capacitor bank having three branches of capacitors connected in delta configuration is connected in parallel to the supply terminals. Determine the required capacitance in a branch to improve the system power factor to 0.95 lagging. Neglect the power loss of the capacitor bank.

[6.0 Marks]

- Q3. a) i) State three advantages of an interconnected grid system.
  - ii) Briefly explain the difference between spinning reserve and non-spinning reserve of a power system.
  - iii) The equipment in a power station costs Rs. 20 million and has a salvage value of Rs. 2.5 million at the end of 25 years. Determine the depreciated value of equipment at the end of 15<sup>th</sup> year using sinking fund method for an annual interest rate of 10%.
  - [4.0 Marks]

    A total connected load of 350 MW with 60% annual demand factor can be supplied by either a hydro-electric power plant or a thermal power plant. Utilization factor of the power plant with the above demand should be 70%. The estimated costs are as follows:

# Hydro-electric power plant:

Capital cost = Rs. 500,000 per kW installed

Operating cost = Rs. 3.50 per kWh

### Thermal power plant:

Capital cost = 150,000 per kW installed

Operating cost = Rs. 9.00 per kWh

Annual interest rates on capital cost for hydro-electric power plant and for thermal power plant are 7% and 10% respectively. Calculate the minimum annual load factor above which the hydro-electric plant will be more economical. Assume total annual cost is equal to the sum of annual interest on capital cost and annual operating cost.

[4.0 Marks]

 Consider an economy consisting of three sectors: agriculture (A), manufacturing (M), and energy (E). Technology matrix for these three sectors is given below.

- i) Calculate the external consumer demand for each sector, if the estimated production plan is 200 units in agriculture sector, 250 units in manufacturing sector and 180 units in energy sector.
- ii) Determine the new production plan, if the external consumer demand in agricultural sector increases by 40 units.
- iii) Calculate the internal consumption in ii).

[4.0 Marks]

- Q4. a) i) Name three types of dams commonly used in hydro-electric power plants in Sri Lanka and give an example for each type.
  - ii) Briefly explain the operation and application of a pumped storage type hydro-electric power plant.
  - iii) A hydro-electric power station is to be operated at a mean head of 210 m and it is supplied from a reservoir having a catchment area of 800 km². The average annual rainfall in the area is 1300 mm and 85% from the rainfall is available for power generation. The expected plant factor is 70%. Allowing a head loss of 7 m and assuming efficiency of the turbine and the generator to be 92% and 90% respectively, calculate a suitable MW rating for this power station. Suggest the type of turbine suitable for this power plant.

[6.0 Marks]

- b) i) Describe the arrangement of the fuel system of a diesel power plant.
  - ii) Explain the difference between turbocharger and supercharger associated with diesel engines.
  - iii) State three merits of a gas power plant compared to other combustion power plants.
  - iv) A nuclear power plant has a plant capacity of 400 MW and a thermal efficiency of 28%. The plant has an annual plant capacity factor of 0.65 and a peak demand of 300 MW. Nuclear reaction event of uranium releases approximately 3.2×10<sup>-11</sup> J of energy. 1 kg of uranium can have 25.4×10<sup>23</sup> events. Calculate the annual uranium requirement and the load factor of the power plant.

[6.0 Marks]

- Q5. a) i) State three advantages of a combined cycle power plant.
  - ii) Briefly describe two types of condensers used in steam power plants.
  - iii) Briefly explain the operations of economizer, super heater, pre-heater and re-heater in a steam power plant.

[4.0 Marks]

- b) i) Describe two filtering mechanisms used to control the emissions in coal power plants.
  - ii) Discuss the environmental impact of a large hydro-electric plant. Give two real life examples.

[4.0 Marks]

- c) i) What is green-house gas effect?
  - ii) Briefly explain two methods to reduce global warming.
  - iii) Describe the retail economic model for electricity sector.
  - iv) State why retail economic model is difficult to be implemented in Sri Lankan electricity sector.

[4.0 Marks]