

University of Ruhuna **Faculty of Allied Health Sciences**

Department of Pharmacy

First B. Pharm. Part I Examination - October 2019 PH1152: Mathematics (SEQ)

Time: Two (02) Hours

Each question carries equal marks. Calculators will be provided.

Instructions:

- Answer all questions.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.
- a) Find the following limits:

(i)
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$

(ii)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

(ii)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

(iii) $\lim_{x \to 1} \frac{x^2 - 3x + 2}{1 - x}$

- b) Differentiate the function $y = 3x^2 2x$ with respect to x using first principles.
- c) Differentiate the following functions with respect to x and give your answers in the simplest form:

(i)
$$f(x) = 4\sqrt{x} - \frac{6}{\sqrt[3]{x^2}}$$

(ii)
$$g(x) = \tan(x^2 + \sin x)$$

(iii)
$$h(x) = \frac{1 + \ln x}{1 - \ln x}$$

- a) Find the point at which the tangent to the curve $y = \sqrt{4x-3} 1$ has its gradient 2/3. 2.
 - b) Consider the function $y = 2x^3 + 3x^2 12x + 17$.
 - (i) Find the turning points of this function.
 - (ii) Classify the above turning points as maxima or minima using the second derivative
 - c) Malignant tumours respond to radiation therapy and chemotherapy. Consider a medical experiment in which mice with tumours are given a chemotherapeutic drug. At the time of the drug being administered, the average tumour size is about $0.5cm^3$. The tumour volume V(t) after t days is modelled by

$$V(t) = 0.005e^{0.24t} + 0.495e^{-0.12t}$$
, for $0 \le t \le 18$.

- (i) Find V'(t) and V''(t).
- (ii) Show that the function V(t) has a minimum in $0 \le t \le 18$.
- (iii) Show that the minimum point in part (ii) occurs when $t \approx 10.84$ days and find the volume of the tumour at this instant.
- 3. a) Consider the van der Walls equation

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT,$$

where P.V, T, R have usual meanings and a, b are constants. Find first partial derivatives of P with respect to T and V.

- b) Let $f = \ln(e^{2x} + e^{2y})$. Show that $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 2$.
- c) Consider the function $g(T,V) = 2V^3T + 2T^3V$.
 - (i) Find the total differential dg when V = 2 and T = 10.
 - (ii) Show that $\frac{\partial}{\partial T} \left(\frac{\partial g}{\partial V} \right) = \frac{\partial}{\partial V} \left(\frac{\partial g}{\partial T} \right)$.
- d) Show that the function $f(T,V) = TV^{\gamma-1}$, where γ is a constant, is a homogeneous function of degree γ . Does this function satisfy Euler's theorem? Justify your answer.
- **4.** a) Using the substitution $u = x^2 + 1$, evaluate

$$\int 2x\sqrt{x^2+1}\,dx.$$

b) Writing $\sin^2 x$ as $\frac{1}{2}(1-\cos 2x)$, show that

$$\int_0^{\pi/4} \sin^2 x \, dx = \frac{\pi - 2}{8}.$$

c) Use integration by parts formula to show that

$$\int x \ln x \, dx = \frac{x^2 \ln x}{2} - \frac{x^2}{4} + C;$$

where C is an arbitrary constant.

d) The gradient of a curve of the form y = f(x) is given by

$$\frac{dy}{dx} = \frac{8}{(5-2x)^2}.$$

Show that the equation of the curve is given by

$$y = \frac{4}{5 - 2x} + C$$

where C is an arbitrary constant.

If this curve passes through the point (2.7), find the value of C.