

University of Ruhuna - Faculty of Medicine

Allied Health Science Degree Programme First B. Pharm. Part I Examination - July 2016

PH1152: Mathematics (SEQ)

Time: Two (02) Hours

Each question carries equal marks

Instructions:

- · Answer all questions.
- No paper should be removed from the examination hall
- · Do not use any correction fluid.
- a) Find all the solutions of the trigonometric equation $2\cos^3 x + \cos^2 x \cos x = 0$ in the range $0 \le x \le 2\pi$. Give your answers in radians.
 - b) Using the formulae for $\sin(\alpha-\beta)$ and $\cos(\alpha-\beta)$, prove that $\tan(\alpha-\beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$.

Hence deduce that $\tan\left(\theta - \frac{\pi}{6}\right) = \frac{\sqrt{3}\tan\theta - 1}{\sqrt{3} + \tan\theta}$

c) Verify the following trigonometric identities.

Verify the following trigonometric identities:
(i)
$$\frac{\sin \theta}{1 - \cos \theta} - \frac{\sin \theta \cos \theta}{1 + \cos \theta} = \csc \theta (1 + \cos^2 \theta)$$

(ii) $\frac{\csc \theta + \cot \theta}{\tan \theta + \sin \theta} = \cot \theta \csc \theta$

(ii)
$$\frac{\csc\theta + \cot\theta}{\tan\theta + \sin\theta} = \cot\theta \csc\theta$$

a) Find the following limits

(i)
$$\lim_{x\to 3} \frac{3x^2 - 8x - 3}{x^2 - 3x}$$

(i)
$$\lim_{x\to 3} \frac{3x^2 - 8x - 3}{x^2 - 3x}$$
;
(ii) $\lim_{x\to \infty} \frac{3x^2 + 2x + 5}{2x^2 + 5x + 7}$

b) If
$$y = \left(\frac{1+x}{1-x}\right)^3$$
, prove that $(1-x^2)\frac{dy}{dx} = 6y$.

- c) Consider the function $y = (x+3)^2(x-2)^2$
 - (i) Find the turning points of this function.

Continued.

- (ii) Identify the above turning points as maxima, minima or points of inflexion using the second derivative $\frac{d^2y}{dx^2}$.
- (iii) Sketch the curve of the above function, clearly showing the locations of turning points.
- 3. a) A two variable function is given by

$$f(\alpha, \beta) = \cos 2\alpha \sin \beta.$$

- (i) Find the partial derivatives $\left(\frac{\partial f}{\partial \alpha}\right)_{\beta}$, and $\left(\frac{\partial f}{\partial \beta}\right)_{\alpha}$.
- (ii) Show that the total differential df of f at the point $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ is given by

$$df = -\frac{\sqrt{6}}{2} d\alpha + \frac{\sqrt{2}}{4} d\beta.$$

(iii) Prove also that

$$\left[\frac{\partial}{\partial\beta}\left(\frac{\partial f}{\partial\alpha}\right)_{\beta}\right]_{\alpha} = \left[\frac{\partial}{\partial\alpha}\left(\frac{\partial f}{\partial\beta}\right)_{\alpha}\right]_{\beta}.$$

b) Use integration by parts formula to show that

$$\int x^3 \ln 2x \, dx = \frac{x^4}{4} \ln 2x - \frac{x^4}{16} + C,$$

where C is an arbitrary constant.

4. a) Using the identity $\cos 2x = 1 - 2\sin^2 x$, show that

$$\int_{\pi/4}^{\pi/2} \sin^2 x \, dx = \frac{\pi + 2}{8}.$$

b) The gradient of a curve of the form y = f(x) is given by

$$\frac{dy}{dx} = 3(x+1)(x-2).$$

If the point $\left(2,\frac{2}{3}\right)$ lie on the curve, find the equation of the curve.

c) Test the differential equation

$$(2xy + y^3 \cos x) dx + (x^2 + 3y^2 \sin x) dy = 0$$

for exactness. If it is exact, then find its solution.