UNIVERSITY OF RUHUNA - FACULTY OF MEDICINE ALLIED HEALTH SCIENCES DEGREE PROGRAMME FOURTH BPHARM PART I EXAMINATION - JUNE 2015 PH 4123: PHARMACEUTICAL ANALYSIS (SEQ) TIME: TWO HOUR ## INSTRUCTIONS - Answer <u>all</u> questions. - Do not use any correction fluid. - Answer questions in the space provided for each question. - Marks will be penalized for illegible hand writing. ## 01. Answer all parts | | (15 marks) | |---|--| | | , | | | | | | | | | | | | | | | | | ······ | | | 1.2. State the Beer-Lambert Law. | | | Sate the Beet Earnort Edw. | (05 marks) | | | | | | | | | *************************************** | | | | | 1 | | | | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | 1.3. A 3.25 x 10 ⁻⁵ <i>mol dm</i> ⁻³ unknown solution has a transmi measured in a 1.05 cm cell at a wavelength of 525 nm. Calc this solution. | ttance of 18.4% when ulate the absorbance of | | | (10 marks) | | | • | ••••••• | 1.4. Using Woodward-Fieser rules, calculate the λ_{max} for the following compounds. | | (15marks) | |---|---| | ••••••••••••••••••••••••••••••••••••••• | ••••• | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | 1.4.2. | (15marks) | | | | | ••••• | | | | | | | | | 1.4.3. | (15marks) | | | | | | | | | *************************************** | | 1.4.4. | | | | (15marks) | | | | | | ••••••••••••••••••••••••••••••••••••••• | | •••••• | | | | | | | ••••• | | chemist placed 1,3,5-hexatriene and 1,3,5,7- octa | ntetraene in separate flasks | | hout labeling them. How the two compounds cou | ald be differentiated by UV | | chemist placed 1,3,5-hexatriene and 1,3,5,7- octa
shout labeling them. How the two compounds constroscopy? | ntetraene in separate flasks
ald be differentiated by UV
(10 marks) | 1.5. A | Index | No: | | | |-------|-----|--|--| | | | | | (04 m | |---|---|---------------|---|---| | | • | <i></i> . | | • | | | • | | ••••• | | | | •••••• | | | | | • | •••••• | · · · · · · · | •••••• | • | | | • | | | | | • • • • • • • • | ••••• | | | | | 2.2. Calcula | ite the number of fundamen | ntal m | nodes of vibration of H ₂ S a | and HCN mole | | | | | | | | • • • • • • | ••••• | · · · · · · · | | | | ****** | | | | • | | ••••• | • | | | | | | ••••• | | | • | | ****** | | | •••••••••• | | | • | • | | | | | pairs b | y infrared spectroscopy? | | | | | 2.3.1. | y infrared spectroscopy? H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a | | | | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a | | | | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ 8 | | | | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ - COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1. | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ -COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ | (12 marks | | 2.3.1 | H ₃ C-(CH ₂) ₂ -N(CH ₃) ₂ a H ₃ C-(CH ₂) ₂ - COOH a | and | H ₃ C-(CH ₂) ₂ -COOC ₂ H ₅ H ₃ C-CH ₂ -CHO O-CH ₃ is 1720 cm ⁻¹ and th | (12 marks | | Index | No: | | |-------|-----|--| | | | (20 marks) | |----------|--|---| | | | | | | | | | •• | | | | • • | | | | | | | | | | | | . Answei | all parts | | | 3.1. De | fine the term "spin quantum number (I)". | (12 | | | | (12 marks | | | | | | | | | | | | | | 3.2. Spi | n quantum number (1) for different nuclei can be varied from zero to hig | her values. | | - | rite down the (I) values for the following nuclei. | (12 marks | | | | | | | 3.2.1. ¹ H | | | | | | | | | | | | | | | | 3.2.2. ² H | | | | | | | | | | | | | • | | | 3.2.3. ¹² C ¹ | | | | 5.2.5. | | | | | | | | | | | | 13 | | | | $3.2.4.$ ^{13}C | | | | | ••••• | | | | | | | | • | | | alculate the number of orientations possible for the magnetic meleus when placed in a strong magnetic field. | oment of proto (10 marks) | | | | | | | | | | | | | | | | | | Index | No: | |-------|-----| | p | roton in an external magnetic field. | (15 marks) | |-----------|--|------------| | • | | | | • | | | | , | | | | • | | | | | | | | • | .5. I | Define the term "chemical shift". | (10 marks) | A molecule with the molecular formula C ₃ H ₆ O gives only one MR spectrum. Deduce the structure of this compound. | (11 marks) | | • • • • • | | | | • • • • | | | | | | | | • • • • • | ć | Index | No: | | |-------|-----|--| 3.8. Predict the number of peaks and the multiplicity of each peak in the proton NMR spectrum of the following molecules. | 3.8.1. CH ₃ -CH ₂ Cl | (10 marks) | |--|---| 3.8.2. CH ₃ -O-CH ₂ CN | (10 marks) | | | | | | | | | • | | | | | | | | | | | Index | No: | | |-------|-----|--| | 04. | Answer | <u>all</u> | parts | |-----|--------|------------|-------| | | | | | | .1 Identify the redox couple in each half cell. | | |--|---| | | | | | | | | | | | | | | (05 marks) | | 1.2 Write down half-cell reactions and the overall cell reaction. | | | | | | | | | | | | | | | | (10 marks) | | 1.3 Determine the solubility of AgI and the solubility product of AgI | , | | | | (10 marks) | | Conductometry can be used to detect the end point of an acid-base titre. 2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne | (10 marks) ration. 3COOH by NH ₄ OH | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH | (10 marks) ration. 3COOH by NH ₄ OH | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 4.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ration. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ration. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ration. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | 2.2.1 Draw the conductance vs volume of NH ₄ OH for titration of CH and explain the reasons for shape of the graph and how the ne located. | (10 marks) ation. 3COOH by NH4OH utralization point is | | Indov | No: | | |-------|-----|--| | | | | | | working electrode is always encouraged. | | | | | |-------|--|--|--|--|--| | 4. | 3.1 Write short accounts on following terms. 4.3.1.1 Polarization 4.3.1.2 Overpotential | | | | | | • • | | | | | | | | | | | | | | - • | | | | | | | • • | | | | | | | • • | | | | | | | • • | | | | | | | • • | • • | | | | | | | • • • | (15 marks) | | | | | | 4. | 3.2 Draw a rough sketch of current vs voltage plots for polarography and hydrodynamic
voltammetry. Explain their shapes giving reasons. | | | | | | • • | | | | | | | •• | ······································ | | | | | | • • | | | | | | | • • | | | | | | | • • | | | | | | | • • | | | | | | | | | | | | | | ٠. | | | | | | | • • | ndex No: | | |----------|--| |----------|--| | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | State the major difference | | | | |---|-------|---|-------|---|-----------| | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
• | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
• | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
• | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
 | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | ••••• | |
 | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
• | • • • • • | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | ••••• | |
• | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | |
• | | | 4.4.2 In a turbidimetry experiment percentage transmittance obtained for a colle suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | • | |
· · · · · · · · · · · · · · · · · · · | | | suspension of 1.0 ppm is 80 %. Determine percentage transmittance of 2.5 solution of the same substance. | | | •••• | | | | | 4.4.3 | | | | | | | 4.4.2 | | | | | | | 4.4.2 | | ance. |
 | | | | | solution of the same substa | ance. | | | | | | solution of the same substance | ance. |
 | | | | | solution of the same substance | ance. |
 | | | | | solution of the same substa | ance. |
 | | | | | solution of the same substa | ance. | | |