TABLE OF CONTENTS

CHAPT	ER	PAGE
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	4
	A. Relations of -SH groups to frost	
	hardiness and growth	4
	BSH groups in proteins, peptides, and	
	amino acids	8
	C. Methods used to measure -SH groups	19
	1. Oxidizing agents	19
	2. Nitroprusside	25
	3. Alkylating agents	27
	4. Mercaptide forming agents	28
	a. Spectrophotometric	28
	b. Polarographic	32
	c. Amperometric	33
	5. Other methods	41
	6. Complications due to oxidation	
	and denaturation	43
	7. Disulfide reduction	52
III.	MATERIALS AND METHODS	5 9
	A. Determinations of -SH groups	59

CHAPT	ER															PAGE
	в.	Prepa	ratio	n of	plan	t ma	ate:	ria	ls	;		•	•	•	•	86
IV.	RESUL	rs .	• •	• • •	••			•	•	•	•	•	•	•	•	91
	Α.	Amper	ometr	ic me	asur	emer	nts	of	k	nc	wr	1				
		com	pound	s. "	• •		• •	•	•	٠	•	•	•	•	•	91
		1.	Curr	ent-v	olta	ge d	curv	ves	;	•	•	•	•	•	•	91
		2.	n-Doo	decyl	merca	apta	an	e	•	•	•	٠	6	•	•	98
		3.	Cysto	eine	• •	• •	• •	•		e	•	•	e	e	•	103
		4.	Gluta	athio	ne .	• •	e •	ø		•	•	Đ	•	6	•	106
		5.	Thiog	gel.	8 6	с ,	• •	•	e	٠	•	•	٠	•	•	110
		6.	Cupr	ic ti	trat	ions	5.	•	٠	•	•	•	٠	•	•	114
		7.	Anti	foami	ng ag	gent	: .	•	•	•	٠	•	•	•	•	115
	в.	Measu	rement	ts of	-SH	gro	oups	50	f	pl	ar	it				
		home	ogenat	tes.	• •	• •	•	•	•		٠	٠	•	t	•	120
	c.	Refin	ement	s of	the a	ampe	eror	net	ri	.C	me	etł	loc	ls	٠	180
		1.	The t	ise o	f al	coho	ol a	and	l							
			su	lfite	red	ucti	ion	•	•	٠	•	٠	•	•	٠	180
		2.	Mercu	ıric	titra	atic	ons	vs	5	il	.ve	er				
			ti	trati	ons	• •	• •	• .	•	•	٠	•	•	٠	•	192
v.	DISCUS	SSION 2	AND C	ONCLU	SION	s.	• •	٠	•	•	•	•	•	٠	•	213
VI.	SUMMAI	RY	• •		••	• •	•	٠	•	•	•	•	•	•	`•	225
BIBLI	ogra Phi	ζ						•		•	•	•	•			229

iv

LIST OF TABLES

TABL	E	PAGE
1.	Titrations of -SH groups of n-dodecylmercaptan	
	in ammonia buffer, in air and under nitrogen .	101
2.	Titrations of -SH groups of cysteine in	
	ammonia buffer, in air and under nitrogen	105
з.	Titrations of -SH groups of glutathione in	
	ammonia buffer, in air and under nitrogen	107
4.	Titrations of -SH groups of oxidized gluta-	
	thione before and after reduction with	
	different reducing agents	108
5.	The effect of time on aqueous solutions of GSH,	
	titrated with silver nitrate, under nitrogen,	
	in 13% methanol	110
6.	Titrations of -SH groups of thiogel in ammonia	
	buffer, in air and under nitrogen	112
7.	Cupric titrations of cysteine and plant	
	fractions	116
8.	The use of octyl alcohol as an anti-foaming	
	agent when making titrations of -SH groups	118
9.	The use of octyl alcohol in recovering the -SH	
	groups from the foam of soybean homogenates	119

.

10.	Changes in -SH groups with changes in frost	
	resistance of <u>Saxifraga</u> <u>stracheyi</u>	132
11.	Changes in -SH groups of <u>Saxifraga</u> stracheyi	
	leaves incapable of frost hardening	133
12.	Changes in -SH groups with changes in frost	
	resistance of cabbage	134
13.	Changes in -SH groups of <u>Pinus</u> sylvestris	
	needles with changes in frost resistance	137
14.	Changes in -SH groups of tender plants	
	incapable of hardening when exposed to low	
	temperature	138
15.	The -SH groups of fifteen wheat varieties,	
•	ranked according to field proven frost hardi-	
	ness, as determined on the sprouts of seed-	
	lings in the coleoptile to one-leaf stage	139

- 17. A comparison of the -3H groups found in supernatants of thirteen wheat varieties when

	determined immediately after preparation
	and after standing 24 hours at + 3° C 142
18.	A comparison between -SH groups of wheat
	leaves sampled in the morning and in late
	afternoon
19.	A comparison between two 15-second and two
	30-second blendings of wheat leaves and -SH
	groups of homogenates, plastids, and super-
	natant fractions
20.	Changes in -SH groups of homogenate, plastid
	supernatant, grana, and grana supernatant
	fractions with changes in frost resistance
	of <u>Saxifraga</u> <u>stracheyi</u> . Leaves homogenized
	in nitrogen
21.	Changes in -SH groups of homogenate, plastid,
	plastid supernatant, and grana supernatant
	with changes in frost resistance of <u>Saxi</u> -
	fraga stracheyi. Leaves homogenized in air . 149
22.	Changes in -SH groups of homogenates and

mitochondria with changes in frost resistance of <u>Saxifraga</u> <u>stracheyi</u> leaves. 151

TABLE

23. Changes in -SH groups of Saxifraga stracheyi leaf homogenates blended in air and under nitrogen and disulfides reduced with sodium sulfite giving the total possible -SH groups..... 152 Changes in -SH groups of cabbage homogenates, 24. plastid, and plastid supernatant fractions with exposure to frost hardening conditions . 154 25. GSH oxidizing activity of Saxifraga strachevi blended in nitrogen or in air 158 GSH oxidizing activity of cabbage blended in 26. 159 27. GSH oxidizing activity of Scotch pine blended 161 28. GSH oxidizing activity of sunflower and kidney bean blended in nitrogen or in air. 162 29. Changes in -SH groups of <u>Saxifraga</u> stracheyi homogenates when exposed to hardening temperatures, blended in nitrogen or in air, and reduced with sodium sulfite in the absence or presence of guanidine hydrochloride 164

30. Changes in -SH groups of sunflower homogenates when exposed to hardening temperatures, blended in nitrogen or in air, and reduced with sodium sulfite in the presence of guanidine hydrochloride, and bean homogenates only blended in nitrogen or in air. 165 The effects of increased concentration of 31. sodium sulfite on reduction of -SS- bonds of Saxifraga stracheyi homogenates 167 32. The -SH groups of Saxifraga stracheyi homogenates in the native state, reduced with sodium sulfite, denatured with guanidine hydrochloride, and reduced with sodium sulfite in the presence of guanidine hydrochloride 169 A comparison between the -SH groups of cabbage 33. homogenates titrated in aqueous media and in 13% alcohol 172 34. The -SH groups of Saxifraga stracheyi homogenates as determined by the regular titration method and with excess silver titrant added

.

4

х

	before the homogenates were added to the
	titration medium
35.	Differences in the -SH groups of cabbage
	homogenized at pH 7.5 or pH 4.5 177
36.	Changes in -SH groups of <u>Saxifraga</u> stracheyi
	and cabbage leaves when frozen above and
	below the killing temperature 179
37.	A comparison of the -SH groups of thiogel
	titrated with mercuric chloride at the RMPE
	and silver nitrate at the RPWE

LIST OF FIGURES

FIGU	JRE	PAGE
1.	Reference and indicator electrodes used in	
	amperometric titrations	66
2.	Apparatus for amperometric titrations employing	
	a non-synchronous motor, microammeter, and	
	cell with fixed potential of -0.23V	6 9
3.	Amperometric titration of <u>Saxifraga</u> <u>stracheyi</u>	
	homogenate showing the relation of current at	
	a fixed-point to the plotted end-point	71
4.	Amperometric titration of cabbage homogenate and	
	thiogel showing the relation of current at a	
	fixed-point to the plotted end-point	72
5.	Diagram of apparatus for manual control of	
	applied voltages for current-voltage curves	
	and amperometric titrations	77
6.	Amperometric titration vessel equipped with	
	nitrogen flow to insure oxygen free medium	78
7.	Amperometric titration of <u>Saxifraga stracheyi</u>	
	homogenate in aqueous ammonia buffer and in	
6	13% methanol	83
8.	Current-voltage curves for n-dodecylmercaptan	

in aqueous ammonia buffer or 95% alcohol, with and without silver nitrate added 92 Current-voltage curves for cysteine in aqueous 9. ammonia buffer with and without silver nitrate 94 10. Current-voltage curves for cysteine in ammonia buffer in 95% alcohol with and without 95 11. Current-voltage curves for reduced glutathione in aqueous ammonia buffer with and without 96 12. Current-voltage curves for reduced glutathione in ammonia buffer in 95% alcohol with and without silver nitrate added 97 13. Amperometric titration of n-dodecylmercaptan in aqueous ammonia buffer or in ammonia buffer 99 14. Current-voltage curves for thiogel in 111 15. Current-voltage curves for ammonia buffer only,

ammonia buffer made with 0.166M sucrose and

PAGE

0.0133M K₂HPO₄, and with silver nitrate added 122 16. Blank amperometric titration of ammonia buffer, pH 9.3, in the presence of 0.166M sucrose and 17. Current-voltage response for several additions of silver nitrate in ammonia buffer in the presence of 0.166M sucrose and 0.0133M K₂HPO₄. 123 18. Current-voltage curves for Seneca wheat in aqueous ammonia buffer in the presence of sucrose and phosphate, with and without 124 19. Current-voltage curves for Saxifraga stracheyi homogenate in aqueous ammonia buffer in the presence of sucrose and phosphate, with and without silver nitrate added 125 20. Current-voltage curves for cabbage homogenate in aqueous ammonia buffer in the presence of sucrose and phosphate, with and without silver 21. Current-voltage curves for sunflower homogenate

in aqueous ammonia buffer in the presence of sucrose and phosphate, with and without 127 22. Current-voltage curves for aqueous ammonia buffer with sodium sulfite added and with sodium sulfite plus silver nitrate added . . . 129 23. Current-voltage curves for ammonia buffer in 60% ethanol with sodium sulfite added and with sodium sulfite plus silver nitrate added. 130 Amperometric titration of Saxifraga stracheyi 24. homogenate with excess silver nitrate added to the supporting medium before the homogenate was added and then extrapolated to the end-point 174 25. Amperometric titration of supernatant from homogenized Saxifraga stracheyi leaves in ammonia buffer and in ammonia buffer with sodium sulfite added 183 26. Amperometric titration of cysteine in aqueous ammonia buffer with and without sodium sulfite 183 added

FIGURE

* 8

27.	Amperometric titration of cysteine in ammonia	
	buffer in 89% ethanol with and without	
	sodium sulfite added	184
28.	Amperometric titration of reduced glutathione	
	in aqueous ammonia buffer with and without	
	sodium sulfite added	184
29.	Per cent recovery of cysteine in increasing	
	concentrations of ethanol by argentometric	
	amperometric titrations at the RPWE in	
	ammonia buffer, (a) without sodium sulfite	
	added and (b) with sodium sulfite added	185
30.	Per cent recovery of reduced glutathione in	
	increasing concentrations of ethanol by	
	argentometric amperometric titrations at the	
	RPWE in ammonia buffer, (a) without sodium	
	sulfite added and (b) with sodium sulfite	
	added	186
31.	Amperometric titration of cysteine in ammonia	
	buffer in 60% ethanol with and without sodium	
	sulfite added	189
32.	Amperometric titration of supernatant from	

-54

	PAGE
homogenized cabbage leaves in ammonia buffer	
in 60% ethanol with and without sodium sul-	

- 34. Current-voltage curves for tris buffer only, tris buffer plus 0.01M NaCl, and tris buffer plus 0.10M NaCl, at the RMPE 195
- 35. Current-voltage curves for tris buffer at the RMPE with and without excess mercuric chloride added. All with 0.1M NaCl added. . . 196

PAGE

FIGURE

39.	Amperometric titration of reduced glutathione	
	in tris buffer and 0.01M NaCl at the RMPE with	
	mercuric chloride as titrant showing double	
	end-points	201
40.	Amperometric titration of reduced glutathione	
	in tris buffer and 0.05M NaCl at the RMPE	
	with mercuric chloride as titrant showing	
	double end-points	202
41.	Current-voltage curve for thiogel in tris	
	buffer and 0.01M NaCl at the RMPE	204
42.	Amperometric mercuric titrations of thiogel in	
	tris buffer at the RMPE (a) at pH 7.5 and	
	(b) at pH 1.95. Both titrations in the	
	presence of 0.10M NaCl	205
43.	Amperometric mercuric titrations of thiogel in	
	tris buffer at the RPWE (a) at pH 7.4, (b) pH	
	2.9 and (c) in phosphate buffer at pH 8.3	206
44.	Amperometric argentometric titrations of	
*	thiogel at the RPWE in ammonia buffer, pH	
	8.6 and in tris buffer, pH 7.4	207

FIGURE	PAGE
45. Amperometric argentometric titrations of	
thiogel in ammonia buffer in the presence	۰.
of 0.10M sodium sulfite	211
46. Current-voltage curves at the RPWE for (a)	
ammonia buffer, (b) ammonia buffer with	
thiogel added, (c) ammonia buffer with sodium	
sulfite added, and (d) ammonia buffer with	
thiogel, sodium sulfite and excess silver	
nitrate added.	212

.