

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 7 Examination in Engineering: March 2021

Module Number: EE7211

Module Name: Optical Fiber Communication

[Three Hours]

[Answer all questions, each question carries 10 marks]

Q1 Answer any four parts of this question.

- a) What are the elements of optical fiber communication system? Briefly explain the advantages of optical communication.
- b) What is the difference between step index fiber and graded index fiber? How does the ray of light propagate in a graded index fiber?
- c) A multimode step index fiber has a relative refractive index difference 1% and a core refractive index of 1.5. The number of modes propagating at a wavelength of 1.3 μm is 1100. Determine the diameter of the fiber.
- d) An optical fiber has a numerical aperture of 0.344. What is the acceptance angle for meridional rays? Calculate the acceptance angle for skew rays which change the direction by 100° at each reflection.
- e) A silica optical fiber with a core diameter large enough to be considered by the ray theory analysis, has a core refractive index of 1.50 and a cladding refractive index of 1.45. Determine,
 - i) the critical angle at the core-cladding interface.
 - ii) the numerical aperture of the fiber.
 - iii) the acceptance angle in air for the fiber.

 $[2.5 \text{ Marks} \times 4 = 10.0 \text{ Marks}]$

- Q2 a) i) What are the main causes related to attenuation in an optical fiber?
 - ii) The mean power launched in a fiber link is 1.5 mW and the fiber has an attenuation of 0.5 dB/km. Determine the maximum possible link length when the mean optical power at the detector is $2\,\mu\text{W}$.

[2.0 Marks]

b) Suppose that the total pulse broadening of a light pulse (for meridional rays and totally ignoring the effect of skew rays) due to intermodal dispersion in a multimode step index fiber is given by

$$\delta T_s = \frac{L(NA)^2}{2n_1C}$$

where L is the fiber length, NA is the numerical aperture, n_1 is the core refractive index and C is the velocity of light.

If the optical input to the fiber is a pulse $p_i(t)$ defined for $\frac{-\delta T_s}{2} \le t \le \frac{\delta T_s}{2}$

having a unit area, i.e., $\int_{-\infty}^{+\infty} p_i(t) dt = 1$, obtain an expression for the rms pulse broadening of the light pulse.

[3.0 Marks]

- c) A multimode step index fiber has a core refractive index of 1.5 and a relative refractive index difference of 2%. The material dispersion parameter for the fiber is 250 ps.nm⁻¹.km⁻¹ and makes the material dispersion as the dominant component in terms of intramodal dispersion. Determine
 - i) the rms pulse broadening due to intermodal dispersion.
 - ii) the total rms pulse broadening per km when the fiber is used with an LED source having an rms spectral width of 50 nm.
 - iii) the corresponding bandwidth-length product of the fiber.

[5.0 Marks]

Q3 a) Illustrating the output characteristic curves (Optical power versus current) for an LED and a Laser diode, explain what is meant by the pumping threshold of a Laser diode.

[2.0 Marks]

b) Explain the emission pattern for a surface emitting LED and an edge emitting LED.

[2.0 Marks]

- c) For a laser having a crystal length of 7 cm, refractive index of 1.5 and peak emission wavelength of $0.5\,\mu m$, determine
 - i) the number of longitudinal modes of the laser.
 - ii) the frequency separation among the modes.

[3.0 Marks]

- d) i) List the two modulation methods used in optical fiber communication systems.
 - ii) Hence, discuss the implication of the modulation and demodulation process shown in Figure Q3.

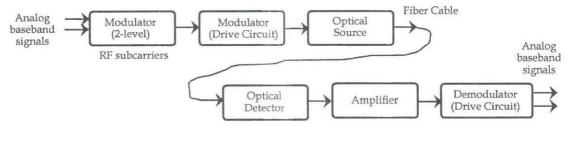


Figure Q3

[3.0 Marks]

- Q4 a) Briefly explain the following parameters related to an optical detector.
 - i) Detector responsivity
 - ii) Quantum efficiency
 - iii) Capacitance

[3.0 Marks]

- b) i) Explain the principle of optical detection process of a *p-n* photodiode.
 - ii) What is the significance of the intrinsic layer inserted between p and n layers in a p-i-n photodiode?

[3.0 Marks]

- c) A *p-i-n* photodiode has a quantum efficiency of 50% at a wavelength of 0.9 μm. Determine
 - i) the responsivity of the photodiode at 0.9 µm.
 - ii) the received optical power, if the photocurrent is 10-6 A.
 - iii) the number of received photons at the 0.9 µm wavelength.

[4.0 Marks]

- Q5 a) i) What are the main components of an optical receiver?
 - ii) Explain the necessity of a preamplifier in an optical receiver.

[2.0 Marks]

- b) Briefly explain the following noise types associated with optical fiber communication systems.
 - i) Thermal noise
 - ii) Dark current noise
 - iii) Quantum shot noise

[3.0 Marks]

c) The internal gain mechanism used in an Avalanche Photodiode (APD) increases the current fed into the amplifier. If the photocurrent is increased by a factor M (Mean avalanche multiplication factor), then the shot noise is also increased by an excess noise factor M^x . Therefore, the SNR for APD can be determined by combining the noise contribution from the load resistor and the amplifier. The SNR for the APD is given by

$$\frac{S}{N} = \frac{I_p^2}{2eB(I_p + I_d)M^{x+2} + \frac{4KTBF_n}{R_L}}$$

A silicon APD (x = 0.3) has a capacitance of 5 pF, negligible dark current and is operated with a post detection bandwidth of 50 MHz. If the photocurrent before the gain is 10^{-7} A and the temperature is 18 $^{\circ}$ C, determine

- i) SNR when M=1
- ii) SNR when $M = M_{\mathit{OP}}$. Assume all operating conditioned are maintained.
- iii) SNR improvement from part i) and part ii).

[5.0 Marks]