

## **UNIVERSITY OF RUHUNA**

## **Faculty of Engineering**

End-Semester 3 Examination in Engineering: March 2021

Module Number: CE3303

Module Name: Fluid Mechanics (C-18)

## [Three Hours]

[Answer all questions. Each question carries TWELVE marks]
All standard notations denote their usual meanings.

Q1. a) Briefly explain, what is meant by a fully developed flow.

[2 Marks]

b) The velocity u at any radius r in a fully developed laminar flow through a straight horizontal pipe of internal radius  $r_0$  is given by

$$u = (1/4\mu)(r_0^2 - r^2)\frac{dp}{dx}$$

where  $\frac{dp}{dx}$  is the pressure gradient in the direction of the flow. Show that

(i) the pressure drop over a length L is given by  $\Delta P = \frac{32\mu VL}{D^2}$ , where v is the mean velocity.

[3 Marks]

(ii) wall shear stress  $\tau_0$  is given by  $\frac{r_0}{2}\Delta P$ 

[3 Marks]

- c) A liquid with density  $900 \, kg/m^3$  and kinematic viscosity  $2 \times 10^{-4} m^2/s$  flows in a horizontal pipe of  $50 \, mm$  diameter at a mean velocity of  $5 \, m/s$ . If the length of the pipe is  $10 \, m$ , determine
  - (i) the friction coefficient
  - (ii) wall shear stress

[4 Marks]

Q2. a) Assuming that a pipe run in full with a steady flow, derive an expression to estimate head lost due to dissipation of energy as heat at an abrupt enlargement of the cross section.

[3 Marks]

b) The flow rate in the pipe system in Figure Q2 is  $0.05 \, m^3/s$ . The pressure at point 1 is measured to be  $260 \, kPa$ . All the pipes have a roughness value of  $0.15 \, mm$ . Determine the pressure at point 2. Take the loss coefficient for the sudden contraction as 0.05 and kinematic viscosity as  $v = 10^{-6} m^2/s$ . Moody diagram is given in Page 4.



Figure Q2

[9 Marks]

Q3. a) Consider a boundary layer developed over a smooth thin flat plate. State the boundary conditions that should be statisfied by the velocity distribution of a laminar boundary layer under the conditions of zero-pressure gradient.

[2 Marks]

b) Which of the following expressions describes better velocity distribution for a laminar boundary layer on a flat plate in the absence of a streamwise pressure gradient? Provide reasons.

(i) 
$$\frac{u}{v} = \frac{3}{2} \left( \frac{y}{\delta} \right) - \frac{1}{2} \left( \frac{y}{\delta} \right)^3$$

(ii) 
$$\frac{u}{U} = 3\left(\frac{y}{\delta}\right) - 1\left(\frac{y}{\delta}\right)^2$$

[2 Marks]

- c) Air of density  $1.2 \, kg/m^3$  and kinemetic viscosity  $14.5 \, mm^2/s$  passes over a thin flat plate of dimensions  $1 \, m \times 1 \, m$ , parallel to the plate. If transition takes place at the trailing edge of the plate at  $Re = 5 \times 10^5$ ,
  - (i) determine the velocity of the airstream.
  - (ii) calculate the frictional drag of the plate by applying Momentum Integral equation. Use the most suitable velocity profile in part (b).

[8 Marks]

- **Q4.** The velocity profile of a very thick liquid flowing along a rectangular channel of constant width is approximated as  $u = 3y^2$  mm/s, where y is in millimeters.
  - a) Determine the volumetric discharge through the channel per meter width.

[2 Marks]

- b) Is it possible to determine the potential function for the flow? If so, what is it?
  [4 Marks]
- c) (i) Determine the stream function for the flow.
  - (ii) Estimate the flow rate of the liquid through the channel. You may consider the liquid height as 8 mm.

[6 Marks]

- **Q5.** The power generated by a wind turbine (P) depends on the physical quantities rotor diameter(D), rotational speed(N), upstream wind velocity(V), air density( $\rho$ ), and dynamic viscosity of air( $\mu$ ).
  - a) Develop the appropriate dimensionless groups in determining wind turbine power generation. Show that  $\frac{P}{\rho D^5 N^3} = \emptyset\left(\frac{V}{ND}, \frac{\rho VD}{\mu}\right)$

[6 Marks]

b) Determine how power of a dynamically similar machine can be increased by three times.

[6 Marks]



Page 4 of 4