An approach towards settling a conjecture on ample numbers

Liyanage M.P., Ranasinghe P.G.R.S.
Department of Mathematics, University of Peradeniya, Peradeniya, Sri Lanka.

A positive integer n is said to be abundant if $\sigma(n)>n$ and ample if $a(n)>$ n, where $\sigma(n)$ denotes the sum of positive divisors of n and $a(n)$ denotes the number of recursive divisors of n. In 2005, Iannuci claimed that there exist abundant numbers that are not divisible by the first k primes for all $1 \leq$ $k \leq 7$. The conspicuous parallel properties between abundant and ample numbers have led to the conjecture, there exist ample numbers that are not divisible by the first k primes for all k. In 2020, Fink used computational evidence to find the smallest ample number that is not divisible by the first two primes as 3.3×10^{81}. In the present study, we consider a positive integer x that is not divisible by the first k primes for all $k \in \mathbb{N}$ and write $x=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{j}^{\alpha_{j}} ; q_{j}=p_{k+j}, j \geq 1$ and $0 \leq \alpha_{j}<\infty$. We try to construct a general formula for $a(x)$ by considering the types of proper divisors m_{i} of x and formulating the total number of proper divisors $a\left(M_{i}\right)=\sum a\left(m_{i}\right)$, where M_{i} is the set containing all the proper divisors of type m_{i}. We show that $a\left(M_{1}\right)=2 \sum_{i=1}^{j}\left[2^{\alpha_{i}}-1\right]$, where $M_{1}=\left\{q_{i}^{\alpha_{k}}: i=1,2, \ldots, j ; \alpha_{k}=\right.$ $\left.1,2, \ldots, \alpha_{i}\right\}$ and $a\left(M_{2}\right)=3 j[j-1]$, where $M_{2}=\left\{q_{i} q_{l}: i=1,2, \ldots, j-\right.$ $1 ; l=2,3, \ldots, j\}$ with j being the number of distinct primes in the prime factorization of x. The aforementioned results are used in the ongoing study on settling the conjecture which states such a positive integer x is ample. These ideas can be utilized in finding new possible modular grid sizes and related applications therein.

Keywords: Abundant numbers, Ample numbers, Recursive divisibility
*Corresponding author: mpliyn16@gmail.com

