Dynamic Variation of Multiple CagA EPIYA-C Motifs in East-Asian *Helicobacter pylori*

Kavinda Tissera ab*, Hanfu Sub, Jeong-Heon Chabc

- ^a Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Ruhuna, Galle, Sri Lanka
- ^b Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, P. R. China
- ^c Department of Oral Biology, Oral Science Research Centre, Department of Applied Life Science, The Graduate School, Yonsei University College of Dentistry, Seoul, Republic of Korea

ABSTRACT

The polymorphic bacterial oncoprotein, CagA bears different types of C-terminal Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs depending on its geographical distribution: ABD type for East-Asian and ABC type for Western H. pylori. The multiple EPIYA-C motifs were associated with a disease severity. Some East-Asian H. pylori isolates carried Western ABC-type CagA. Hence, to gain better understanding, whole genomes of four Korean H. pylori clinical isolates carrying ABC-type CagA were sequenced via Pac-Bio SMRT sequencing technology, and the phylogenetic analysis was performed, which identified that three of four isolates indeed belong to hpEastAsia group with typical East-Asian polymorphism of virulence factors and one is grouped to HpAfrica with typical Western polymorphism. Furthermore, the variation of multiple EPIYA-C motifs in East-Asian H. pylori background was investigated using a Korean clinical isolate, K154, belonging to hpEastAsia but possessing CagA EPIYA-ABCCCC. Due to the sequence homology for CagA multimerization sequence located at the EPIYA-C segment, we predicted the possibility of changing the number of C motifs via homologous recombination. To test this hypothesis, 287 single colonies after culturing 1st generation were screened for the detection of multiple EPIYA-C motifs by PCR-based screening method and further verified by DNA sequencing. Three out of 287 single colony isolates (1%) showed polymorphism in the number of EPIYA-C motifs in vitro: increasing EPIYA-C motifs in five and decreasing EPIYA-C motifs in three and even in complete deletion. The mechanism of dynamic change of EPIYA-C repeats may play a part in generating an intraspecies diversity in East-Asian H. pylori.

Keywords: Helicobacter pylori, CagA, geographic diversity

^{*}Corresponding author: kavindatissera@ahs.ruh.ac.lk