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Introduction 

Reward based learning, ‘reinforcement learning’ (RL) is found in many day to day 

activities. Similar models can be found in the brain. The basal ganglia and the cerebellum 

in the brain were thought to be dedicated to motor control in the early days. However, 

now it is believed that the cerebellum, the basal ganglia, and the cerebral cortex are 

specialized for different types of learning; supervised learning, reinforcement learning 

and unsupervised learning, respectively (Doya, 2000). Engineers for centuries have 

mimicked nature and in this case, the three types of learning are types that have been 

used extensively in artificial intelligence (AI). AI relies on the machine being able to learn 

certain patterns and structures of the data in order to predict output or the action the 

machine should do. Self-driven cars, thought controlled robots, prosthetics, photo 

tagging in social media, google targeted advertisements are a few examples. 

In early days, engineers modelled the neural networks in the brain; artificial neural 

networks (ANN). The biological neural network has many redundancies in its connections, 

is able to map the input to the output and has the ability to adjust itself based on the 

feedback received through sensory inputs like touch and visual feedback. Similarly, ANN 

had many interconnections and had a mechanism to receive feedback by comparing the 

output to a desired signal. This comparison to a desired signal brings about an ‘error’ 

which can be used to change the parameters in the ANN. Such error based learning is 

what is called supervised learning. In unsupervised learning, no such external signal exists 

and the system purely relies on the input data structure to make decisions. There are 

many real world examples that cannot rely on such extremes but rather rely on something 

in-between. In other words we do not have anything to use as an error signal (as in the 

case of amputees for controlling robotic limbs), neither can we rely solely on the input 

data structure in real world cases where the data is contaminated with noise. The reward 
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based learning in the brain motivated engineers to find a way to introduce this reward 

based learning in to machine learning. This revolutionized the field of machine learning 

as it was possible now to teach the machine based on reward and punishment.   

Brain-machine interfaces (BMI) is one of the applications where medicine and 

engineering fuse together. This is widely used in paralyzed patients to help them to think 

of movements and be able to control computer cursors, artificial limbs, robots or their 

own paralyzed limbs. Many of the BMIs designed through the ages have used supervised 

learning techniques creating the necessity of a desired signal in order to perfect the 

algorithm. However, in the case of amputees or paralyzed individuals, there is no physical 

movement in order to acquire a desired signal. This is where RL can be helpful as it does 

not need a supervised error signal. If we are able to acquire a reward signal from the brain 

itself, the system can be truly autonomous. The initial work was done in 2007 as proof of 

concept and applied to rodents that were able to control a robotic arm (DiGiovanna et 

al., 2007). In 2010 the research progressed to value (reward and punishment) based 

decision making (Mahmoudi and Sanchez, 2011). 

This paper reviews the research carried out from 2011 to establish a new RL architecture 

that can use BMIs for paralyzed individuals to be able to control in a truly autonomous 

manner. In our research we developed an architecture that was able to take the feedback 

from the brain itself (Pohlmeyer et al., 2012). Next, we were able to show that the this 

architecture was able to receive signals from two different sources from the brain to be 

truly an autonomous agent (Mahmoudi et al., 2013). Extracting features from these 

neural data is also an important step in the BMI process (Prins et al., 2013). In the next 

paper, we showed how even amidst neural perturbations, this model was able to self-

adjust and maintain its performance with animal data (Pohlmeyer et al., 2014). The next 

challenge we had was to be able to change the architecture in a way to receive a less than 

perfect feedback. Our research showed the theoretical simulations of being able to 

include a confidence metric (Prins et al., 2014). We have shown with simulated data that 

indeed this is possible (Prins et al., 2017b). One of the research published was behavioural 

training for non-human primates (NHP) to carry out experiments in order to test such 

models (Prins et al., 2017a). We had already shown proof of concept that the striatum 

was a good candidate to extract such a reward signal (Geng et al., 2013). All of this gave 

us the confidence that a system can be implemented where a paralyzed person will 

someday be able to go home with a system without having a caregiver supervising this 

system. We performed some BMI clinical trials with electroencephalographic (EEG) data 

for spinal cord injured (SCI) subjects (Gant et al., 2018). Final research shows how a SCI 

subject was implanted with two electrocorticography (ECoG) strips and was sent home 
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with ability to open and close his hand with his own volition (Cajigas et al., 2021). These 

10 research publications span across a decade and capture work done by the author for 

a longer period (and is continuing). This paper discusses the process from the initial phase 

where we started mimicking RL in the brain and finally sending a paralyzed person home 

to be able to open and close his hands with his own volition. 

 

Methods 

BMI has several components as shown in Figure 1: data acquisition, signal processing, 

external device/actuator and feedback. Data acquisition block collects the neural data 

from the subject and pre-amplifies it before sending it to the signal processing block. The 

signal processing block is the hub of the BMI. It does all the filtering and feature extraction 

needed for the algorithm to be able to classify the signals or to be able to interpret the 

subject’s intention. Next is the external device or the actuator (robotic arm, computer 

cursor). The final component is the feedback provided; this can be audio-visual feedback, 

feedback to the brain or to the algorithm itself. One of the challenges in BMI is to be able 

to give the feedback to the classification algorithm. In able bodied persons, this signal is 

taken from their limbs and given as a feedback. Unlike in an able bodied person, a 

paralyzed person is unable to move their limbs and hence the necessity for a BMI system.  

 
Figure 1: Brain-Machine Interface (BMI) system: Data acquisition, signal processing, external 

device/actuator and feedback. 

Therefore we developed a reward based architecture that would not require such error 

signals and the preliminary work was done using NHP. Animal behavioural training rely 

on repetitive movements, encouraged by rewards (usually food pellets or juice rewards) 

(Prins et al., 2017a). The different types of learning in the brain are shown in Figure 2. Out 

of these, the supervised learning relies on the external error signal which is difficult to 
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acquire from paralyzed subjects and the unsupervised learning techniques which rely on 

the input data structures are not 100% reliable due to noise in biological data. Therefore 

we proposed the RL based system. 

 
Figure 2: Different types of learning in the brain (Doya, 2000). 

RL techniques are vast and can be quite exhaustive; any method one can think of to 

include a reward in to the algorithm, such method can be used for RL. Therefore the first 

step was to select a RL architecture which would be a realistic model to test our theory 

on. We selected the actor-critic RL paradigm where the actor takes an action and the critic 

criticizes this action (Mahmoudi et al., 2013). Figure 3 shows the basic model for an 

autonomous system. We were able to show proof of concept using Hebbian RL; neurons 

that fire together, wire together. Unlike traditional ANN, using the Hebbian rule makes it 

possible to give the feedback faster to earlier stages of the network (Mahmoudi et al., 

2013). 

 
Figure 3: The actor–critic model for autonomous BMI (Prins et al., 2014). 
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In order to test the stability of this system, we introduced neural perturbations and tested 

on NHP (Pohlmeyer et al., 2014). Even with a 50% of the neural data missing or 50% neural 

data addition, the system was able to quickly readjust and maintain its accuracy levels. 

The critic is the key to making the BMI autonomous; therefore we proposed to take the 

critic signal from the reward centres of the brain itself. We have shown that this is possible 

with NHP neural data (Prins et al., 2013). However, one of the discoveries from this 

research was that the critic accuracy limited the overall performance. Since biological 

data have less than perfect accuracy, it was important to be able to not rely on the critic 

completely but only use the critic when it was able to provide good feedback. We 

overcame this challenge by introducing a confidence metric for the critic (Prins et al., 

2014); when the critic was confident, the critic feedback would be used, but otherwise it 

would be ignored. This system was tested with NHP for a two choice task where the 

animal was controlling the robotic arm. The experimental paradigm steps are given in 

Figure 4. 

 
Figure 4: Experimental paradigm for the NHP controlling the robotic arm for two types of trials (Prins 

et al., 2014). 

The next experiments were on simulated data from the reward centres of the brain and 

testing if the BMI was able to maintain the accuracy with a less than perfect critic (Prins 

et al., 2017b). Through simulations we were able to find out the sweet spot for the 

thresholding of the critic confidence (Prins et al., 2017b). 

Results 

The results presented here are in two sections:(1)foundations of perfect critic and critic 

with confidence metric for RL based BMI (2)applications of BMI for human clinical trials. 

Figure 5 shows an example of neural data from NHP. Here the primary motor cortex (MI) 
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was targeted for the input to the actor and the nucleus accumbens (NAcc) was targeted 

for the input to the critic. The colour shades show neural data from different neurons.  

 
Figure 5: Neural data from reward centre of the brain (NAcc) and motor cortex (MI) (Prins et al., 

2017a) 

In order for the algorithm to learn the task, there are several parameters that need to 

adjust. Some of these are called the weights which map the input to the output. Figure 6 

shows how the weights were stabilized and when there were perturbations, adjusted 

itself again to stabilize and give an accurate output. This showed proof of concept that 

the Hebbian actor-critic model was theoretically suitable for our application. NHP tests 

with this showed that even with 50% add or drop, the BMI was able to quickly adjust its 

weights and maintain the performance (Pohlmeyer et al., 2014). Thus proving that for a 

perfect critic, the actor is able to maintain its performance.  



19th Academic Sessions - 2022  
University of Ruhuna, Matara, Sri Lanka  ISSN 2362-0412 

xxi 
 

 
Figure 6: Hidden layer and output layer weights of the ANN for the actor (Mahmoudi et al., 2013) 

Next, the critic was tested. Figure 7 shows how having the confidence measure inbuilt to 

the critic increases the overall performance in (A)simulated data (B)simulated data with 

noise (C)real NHP data (Prins et al., 2014). This research showed that if we have the ability 

to include this confidence metric into the critic, the overall performance can be improved. 

 
Figure 7: Comparison of overall performance with and without the confidence measure (A) simulated 

data (B) simulated data with noise (C) real NHP data (Prins et al., 2014) 

The solution to this was to introduce a threshold to the critic. Figure 8 shows how the 

hidden and output weights changed with no threshold, 0.12 and 0.24 threshold. Through 

this research we were able to conclude that having a threshold is important but a too high 

threshold affects the overall system negatively. While the threshold is heavily data 
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dependant, the research findings concluded 0.1-0.15 threshold was best for the data 

tested (Prins et al., 2017b). 

 
Figure 8: How weights change with the threshold value (Prins et al., 2017b) 

After NHP results were confident, we started with non-invasive clinical trials as shown in 

Figure 9A. Rather than controlling robotic arms (like the NHP did), we were able to give 

the subjects regain of their own paralyzed hands using functional electrical stimulation 

(FES) with EEG signals above the motor cortex of C5-C6 SCI subjects. These subjects were 

able to move their shoulders but had no function in their hands. They were able to control 

their hand opening and closing with 75% accuracy (Figure 9B) (Gant et al., 2018). While 

this was impressive, it was not conducive to send subject home with wires connected 

everywhere. 
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Figure 9: (A) EEG experimental setup showing EEG cap (Data acquisition), signal processing 

(computer) and actuator (electrode pads on arm) (B) average accuracies of SCI and control groups 

(Gant et al., 2018). 

Final piece of the puzzle was to completely internalize the system and have a person use 

the system at home (Cajigas et al., 2021). Two ECoG electrode strips were implanted 

above the motor cortex as decided by fMRI imaging (Figure 10A,B). The signals were 

transmitted wirelessly from the transmitter. These signals were decoded by the algorithm 

and fed back to the subject’s paralyzed hand by a FES orthosis. Figure 10C shows the 

experimental setup and Figure 10D shows the spectrograms of the two raw ECoG 

channels. 

 
Figure 10: (A) fMRI image showing the active areas during shoulder movement and thinking of hand 

movement (B) placement of ECoG channels (C) Laboratory set up (D) ECoG spectrograms  

(Cajigas et al., 2021). 

We started at 55% accuracy on a naïve classifier and in the same day achieved 90% 

accuracy. Over a period of 10 weeks, the BMI maintained an 89% accuracy (Figure 11A). 

He was able to increase performance and speed of the Jebsen Hand Function Test (JHFT) 

during the 20 weeks of the study (Figure 11B). His handwriting samples in the figure shows 

how the fluidity improved also (Figure 11C). Finally, the subject was able to go home with 
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the system and control it solely with his own volition without an external cue guiding him 

(Figure 11D). 

 
Figure 11: (A) classifier accuracy (B) task accuracy of moving a cup and piece of 

checkers (C) hand writing (D) Home system (Cajigas et al., 2021). 

Conclusion 

The research presented here is from theoretical foundations to practical implementation 

of BMI to be used without an external training signal. Starting with the RL based BMI 

architecture, it was shown how an actor-critic model is able to handle a reward signal 

rather than an error from a desired output. This architecture was proven to be effective 

with input perturbations but sensitive to the critic accuracy. The results showed how a 

critic confidence measure is able to increase the overall performance. Our results 

demonstrated that a fully implanted BCI can be safely and reliably used to decode 

movement intent from motor cortex allowing for volitional control of hand grasp by a 

patient with SCI in laboratory and home environment. The system was completely 

internalized in our case where as in many other cases there is a pedestal protruding from 

the patient’s skull.  
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