

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 7 Examination in Engineering: July 2016

Module Number: EE7208

Module Name: Advanced Data Communication

[Three Hours]

[Answer all questions, each question carries 10 marks]

Q1 a) Compare and contrast CSMA/CD (Carrier Sense Multiple Access with Collision Detection) and CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) methods.

[2 Marks]

- b) i) Briefly explain, "Stop and Wait" Automatic Repeat Request (ARQ) flow control method using suitable diagrams.
 - ii) Consider a 2.5 Mbps link with a 50 ms round-trip time. Calculate maximum data sending rate assuming that the data sending node uses the "Stop and Wait" ARQ flow control. Assume that the frame size is 1 kB.
 - iii) With the aids of your calculated results explain the draw backs of Stop and Wait ARQ flow control and propose a suitable Flow Control method to achieve higher data rate.

[4 Marks]

- c) In a local airport, arriving aircrafts join a single queue for the runway. Air plane arrivals follow a Poisson distribution with the rate of arrival, $\lambda = 40$ per 2 hours. It is observed that the service time is exponentially distributed and the service rate $\mu = 81$ arrivals/3 hours.
 - i) Calculate the utilization factor.
 - ii) Calculate the probability that there are no air planes in the runway.
 - iii) Calculate the average number of air planes in the runway.

[4 Marks]

- Q2 a) i) Explain why full mesh connection is not suitable for an ordinary telephone network.
 - ii) What is meant by Grade of Service (GoS) in tele-traffic engineering?

[2 Marks]

- b) In a telephone exchange during the busy hour, 2200 calls were offered to a group of trunks and twelve calls were lost. The average call duration was 3 minutes. Calculate the following.
 - i) Offered traffic.
 - ii) Carried traffic.
 - iii) Lost traffic.
 - iv) Grade of service.
 - v) The total duration period of the congestion.

[4 Marks]

- c) On average one call arrives every 10 seconds. Assume that the number of call arrivals in a given time has a Poisson distribution. During a period of 20 seconds, what is the probability that,
 - i) no calls arrive.
 - ii) two calls arrive.
 - iii) more than two calls arrive.

[4 Marks]

- Q3 a) In a local telephone exchange a group of 10 trunks is offered 4 E of traffic.
 - i) Calculate the Grade of Service for the given telephone exchange.
 - ii) Determine the probability that only one trunk is busy.
 - iii) Determine the probability that only one trunk is free.
 - iv) Determine the probability that at least one trunk is free.

[5 Marks]

- b) On average, during the busy hour, a company makes 100 outgoing calls of average duration 3 minutes. It receives 120 incoming calls of average duration 2 minutes. This company wishes to obtain the grade of service of 0.002 for both incoming and outgoing calls. [You may use the given Table Q3 for your calculations]
 - i) Calculate the incoming traffic.
 - ii) Calculate the outgoing traffic.
 - iii) If incoming and outgoing calls are handled on separate groups of lines, how many exchange lines should the company rent for incoming and outgoing calls?
 - iv) If a common group of lines is used for both incoming and outgoing calls, calculate how many exchange lines should the company rent.

[4 Marks]

Q4 a) State three different coding techniques and their purpose.

[1.5 Marks]

b) List the differences between Checksum and Cyclic Redundancy Check (CRC) error detection methods.

[1 Mark]

- c) A memory less source emits 7 messages with probabilities 0.32, 0.28, 0.08, 0.05, 0.12, 0.09 and 0.06.
 - i) Compute the entropy of the memory less source.
 - ii) Propose a set of code words for the above messages using Huffman coding scheme.
 - iii) Determine the average word length of the proposed coding scheme.
 - iv) Verify the validity of the proposed coding scheme.

[5 Marks]

d) A 12-bit Hamming code based Forward Error Correction (FEC) scheme is implemented in a communication channel. The 12-bit code being transmitted contains 4 parity bits located at 1st, 2nd, 4th and 8th bit positions while rest of the 8 bits represent data. If the received bit stream is 010110111001, perform the FEC mechanism to check for any errors that might have occurred during the transmission. [You may use the following parity bit computations]

$$P_{1} = B_{3} \oplus B_{5} \oplus B_{7} \oplus B_{9} \oplus B_{11}$$

$$P_{2} = B_{3} \oplus B_{6} \oplus B_{7} \oplus B_{10} \oplus B_{11}$$

$$P_{4} = B_{5} \oplus B_{6} \oplus B_{7} \oplus B_{12}$$

$$P_{8} = B_{9} \oplus B_{10} \oplus B_{11} \oplus B_{12}$$

[2.5 Marks]

- Q5 a) i) Explain the CIA (Confidentiality, Integrity and Availability) concepts regarding data security using appropriate examples.
 - ii) Authentication is a main requirement for maintaining access control of information systems. State such authentication techniques and how they function.

[2 Marks]

- b) Consider the cryptographic scheme described below.
 - Step 1: Encryption based on Caesar's cipher.
 - Step 2: A FLAG character ' | is inserted after every 5 characters.
 - Step 3: Encryption using a double transposition cipher with the key [3,1,2][3,4,2,5,1]
 - i) The encrypted word is given by the following character sequence, "FL□KQZOZBXFQAX□". Determine the plaintext of the given cipher.
 - ii) Relate the confusion and diffusion concepts to the above cryptographic scheme.

[4 Marks]

- c) i) Distinguish stream ciphers and block ciphers based on their operation.
 - ii) Explain how the encrypting and signing is done in asymmetric key cryptographic schemes.

[2 Marks]

d) Consider the data network in a university (which includes several web, email and proxy servers with other networking devices along with Layer 3 switches). As a network security consultant, what would be your approach to secure the system from both internal / external attacks and malware?

[Hint: Explain the deployment of firewalls and Intrusion Detection Systems]

[2 Marks]

Table Q3: Erlang-B Distribution

Trunks	Grade of Service 1 in 1000	Grade of Service 1 in 500	Grade of Service 1 in 200	Grade of Service 1 in 100
	Traffic Unit	Traffic Unit	Traffic Unit	Traffic Unit
1	0.001	0.002	0.005	0.01
2	0.05	0.07	0.11	0.15
3	0.19	0.25	0.35	0.46
4	0.44	0.53	0.70	0.87
5	0.76	0.90	1.13	1.36
6	1.15	1.33	1.62	1.91
7	1.58	1.80	2.16	2.50
8	2.05	2.31	2.73	3.13
9	2.56	2.85	3.33	3.78
10	3.09	3.43	3.96	4.46
11	3.65	4.02	4.61	5.16
12	4.23	4.64	5.28	5.88
13	4.83	5.27	5.96	6.61
14	5.45	5.92	6.66	7.35
15	6.08	6.58	7.38	8.11
16	6.72	7.26	8.10	8.87
17	7.38	7.95	8.83	9.65
18	8.05	8.64	9.58	10.44
19	8.72	9.35	10.33	11.23
20	9.41	10.07	11.09	12.03
21	10.11	10.79	11.86	12.84
22	10.81	11.53	12.63	13.65
23	11.52	12.27	13.42	14.47
24	12.24	13.01	14.20	. 15.29