

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 2 Examination in Engineering: November 2016

Module Number: EE2202

Module Name: Introduction to Electronic Engineering

[Three Hours]

[Answer all questions, each question carries 10 marks]

All notations have their usual meanings.

- Q1 a) Figure Q1 a) shows three BJT (Bipolar Junction Transistor) configurations.
 - i) Identify the configurations.
 - ii) Sketch the output characteristics of the configurations, clearly labeling the axes and their units.
 - iii) Identify the operating regions saturation, active and cut-off in your sketches for part ii).

[5 Marks]

- b) Figure Q1 c) shows the bias circuits for two BJT configurations.
 - i) Find the bias points for the two cases.
 - ii) Identify the configuration for the BJT to act as a switch.
 - iii) Re-design the bias circuit for the BJT to act as a switch and explain its operation.

[5 Marks]

- Q2 a) i) State the purpose of bias in a transistor amplifier.
 - ii) When a transistor amplifier is biased and a sinusoidal signal is input, the output of the positive half of the signal is found to be clipped. Explain the reason for this.

[3 Marks]

- b) i) Figure Q2 b) shows a BJT amplifier connected to a source V_s with the output open. Give the AC equivalent circuit of the amplifier and calculate the voltage gain A_v of the amplifier. The current gain is β .
 - ii) The amplifier in Figure Q2 b) is now connected to a source V_s with source resistance r_s and a load resistance R_L . Give the circuit diagrams and calculate the overall voltage and current gains.

[4 Marks]

- c) Figure Q2 d) shows an Emitter Follower with a Silicon BJT with β = 100. Determine
 - i) the input resistance r_{in}
 - ii) the voltage gain A_v

[3 Marks]

- Q3 a) i) Give the circuit symbols for an N - JFET and a P - JFET.
 - Sketch the structure of a biased N-type JFET and show the terminals, the ii) channel and the biasing voltage sources V_{DS} and V_{GS} . Newson.
 - iii) Sketch the formation of the depletion regions for
 - I) $V_{DS} = 0$, $V_{GS} \neq 0$
 - II) $V_{GS} = 0$, $V_{DS} \neq 0$
 - III) Explain the difference in the shape of the depletion regions in parts I)
 - An N JFET has a pinch-off voltage $|V_P|$ = 4 V and a saturation current $I_{DSS} = 12 \text{ mA}.$
 - I) For V_{GS} = -1 V, at what value of V_{DS} will pinch-off take place? Note: $V_{DS} = V_{GS} - V_P$
 - II) At what value of V_{GS} will $I_D = 4$ mA Note: $I_D = I_{DSS} (1 - V_{GS}/V_P)^2$

[5 Marks]

- Sketch the structure of an N type biased depletion type MOSFET and b) i) show the terminals, the channel and the bias voltage sources V_{DS} and V_{GS} .
 - The depletion type MOSFET can also be used in the enhancement mode. ii) Sketch the depletion MOSFET drain characteristics for operation in the depletion and enhancement modes.
 - Sketch the structure of an N-type enhancement type MOSFET and explain how the channel is formed.

[5 Marks]

- Q4 Draw the block diagram of a sequential circuit and name all the blocks. a) i)
 - State the main difference between combinational and sequential circuits? ii)
 - iii) What is meant by state of a sequential circuit?
 - Name the two main types of sequential circuits and briefly explain them. iv)
 - v) Briefly explain the synchronous sequential logic systems.

[5 Marks]

- You are required to analyze the digital circuit given in Figure Q4. In the circuit a b) special clocked PQ flip-flop (FF) is used. The PQ FF has two inputs P and Q and it operates as follows.
 - If PQ = 00, the next state of the FF output is 1.
 - If PQ = 01, the next state of the FF output is the same as present.
 - If PQ = 10, the next state of the FF output is the complement of present.
 - If PQ = 11, the next state of the FF output is 0.
 - Derive the characteristic table of the PQ FF. i)
 - ii) The input functions of the FF are given in (1) and (2) below. Simplify the input functions using Karnaugh maps.

$$P_{A} = (\overline{xy} + x)(zA + \overline{zA}) + (\overline{x+y} + x\overline{y})(\overline{zA} + \overline{zA}) + xy\overline{zA} - (1)$$

$$Q_{A} = y(zA + \overline{z}) + z\overline{A}(x + y + xy) - (2)$$

iii) Obtain the truth table for the next state of the PQ FF.

Hint: You may consider following headings in your truth table

1		The state of the s	Journa	innuiligo 11	i your iruir	iuoie				
	Х	У	Z	A_n	P_A	Qa	A_{n+1}			

[5 Marks]

- Q5 a) i) State the basic function of a flip-flop in a sequential circuit?
 - ii) If there are *m* different states each with *n* bits, how many flip-flops do you need to implement the memory of the sequential circuit?
 - iii) Give the logic diagram of a SR flip flop using only NOR gates.
 - iv) State the characteristic table of the above SR flip-flop.
 - v) Draw a gated SR Flip Flop with the same characteristic table using NAND gates for the SR Latch.

[5 Marks]

- b) i) Draw a logic diagram to illustrate how the gated SR flip flop is modified to form the J K flip flop.
 - ii) Fill the detailed truth table given in Table Q5 (b) considering the logic diagram drawn in part b) (i). Hence, obtain the characteristic table of the JK flip flop.
 - iii) For a JK Flip Flop in Master Slave configuration, draw the output waveforms of Master Flip Flop and Slave Flip Flop separately for the given clock signal and J-K inputs as shown in Figure Q5 b). Assume both outputs were 0 prior to the first clock pulse.

Use Figure Q5 b) for your answer and attach it to your answer script.

[5 Marks]

Figure Q1 a)

Figure Q1 c)

Figure Q2 d)

Page 4 of 6

Figure Q4

Table Q5 (b): The detailed truth table for a JK flip-flop

J_n	K_n	Q_n	$\overline{Q_n}$	S_n	R_n	Q_{n+1}
0	0	0	1			
0	0	1	0			
0	(man)	0	1			
0	herrod	1	0			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	0			
	$ \begin{array}{c} J_n \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 1 \\ \hline 1 \\ \hline 1 $	$egin{array}{c cccc} J_n & K_n & & & & & & & & & & & & & & & & & & &$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure Q5 b)