

## University of Ruhuna

## Faculty of Fisheries and Marine Sciences & Technology

## B.Sc. Hons in Fisheries and Marine Sciences Degree Level I (Semester I) – September 2018

Module Name: Mathematics Exam date: 2018-09-12

Module Number: FDN1142

Time: Two (02) hours

Answer ALL Questions. Calculators will be provided.

a) Find the following limits:

(i) 
$$\lim_{x \to 3} \frac{x^2 + x - 12}{2x^2 - 5x - 3},$$
(ii) 
$$\lim_{x \to 25} \frac{x - 25}{\sqrt{x} - 5}.$$

(ii) 
$$\lim_{x \to 25} \frac{x - 25}{\sqrt{x} - 5}$$

b) A colony of viruses can be modelled by the rule

$$N(t) = \frac{2t}{(t+0.5)^2} + 0.5,$$

where  $N(t) \times 10^5$  is the number of viruses on a nutrient plate t hours after they started multiplying.

- (i) How many viruses are present initially?
- (ii) Find  $\frac{dN(t)}{dt}$ .
- (iii) At what rate would the virus numbers be changing after 10 hours?
- c) Find the first derivative f'(x) of  $f(x) = \frac{\sin(x)}{e^{2x}}$  and hence find the gradient at the point where x=0.

a) Determine the stationary points of the function 2.

$$f(x) = \frac{2x^3}{3} + \frac{3x^2}{2} - 2x + 4$$

and classify them as maxima or minima using the second order derivative f''(x).

b) The curve  $y = ax^2 + bx + c$  passes through the point (0,8) and has a stationary point at (1,5). Find the values of a, b and c.

Contd...

3. a) The van der Waals equation for n moles (n is a constant) is given by

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT.$$

- (i) Find P in terms of V and T.
- (ii) Find the partial derivatives  $\frac{\partial P}{\partial V}$  and  $\frac{\partial P}{\partial T}$ .
- (iii) Write down the expression for total differential dP in terms of V, T, dV and dT.
- (iv) Show also that

$$\frac{\partial}{\partial V} \bigg( \frac{\partial P}{\partial T} \bigg) = \frac{\partial}{\partial T} \bigg( \frac{\partial P}{\partial V} \bigg).$$

- b) Evaluate  $\int \frac{1}{\sqrt{x}+1} dx$  using the substitution  $t = \sqrt{x}$ .
- c) Find the constants A and B such that

$$\frac{3x+4}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3}.$$

Hence, evaluate

$$\int \frac{3x+4}{(x-2)(x+3)} dx.$$

4. a) Use integration by parts to evaluate the integral

$$\int_{1}^{2} t e^{2t} dt.$$

b) Show that the differential equation

$$(2xy - 3x^2) + (x^2 - 2y)\frac{dy}{dx} = 0$$

is exact and find its solution.

c) Solve the differential equation

$$\tan(\theta) \frac{dx}{d\theta} = x$$
; where  $x = 2$  when  $\theta = \pi/6$ ,

using the method of separation of variables.

Last Page