

UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 1 Examination in Engineering: August 2015

Module Number: CE 1301

Module Name: Introduction to Civil Engineering

[Repeat Examination for E2012 batch]

[Three Hours]

[Answer all questions, each question carries SIXTEEN marks]

Q1. a) Briefly describe the term "Engineering" as you understand.

[1.0 Mark]

b) Why does an engineer is called a problem solver?

[1.0 Mark]

c) List four prehistoric civil engineering constructions in the world.

[2.0 Marks]

d) Identify following ancient structures in Sri Lanka with their locations.

[2.0 Marks]

(i)

(ii)

(iii)

(iv)

Page 1 of 5

Fig. Q1

e) State four main types of transportation systems giving examples for each.

[2.0 Marks]

f) State three main reasons for urban traffic congestion.

[2.5 Marks]

g) Recently there have been moves to introduce cleaner and environmentalfriendly means of transport. In that context explain the term *Environmentally* Sustainable Transport giving examples.

[2.5 Marks]

- h) What are the public institutions in Sri Lanka that are responsible for the operation and maintenance of infrastructure facilities built to provide following services?
 - i) Drinking water supply
 - ii) Road transport
 - iii) Electricity supply

[3.0 Marks]

Q2. a) Name and explain briefly the different types of (i) solids and (ii) organic matter, found in water and wastewater.

[4.0 Marks]

b) Explain the following statements:

 The discharge of industrial wastewater into surface water bodies causes water pollution.

[2.5 Marks]

ii) Keeping a balance between the environment and economic activities will help achieve the 'sustainability'.

[1.5 Marks]

iii) The 'urbanization and industrialization' lead to an 'enhanced greenhouse effect' and 'stratospheric ozone layer depletion'.

[2.0 Marks]

c) Explain briefly two engineering and two management approaches to reduce the air and noise pollution during the construction of a multi-storey building.

[2.0 Marks]

d) 'Evaluation of the impacts' is the most difficult and controversial step in an Environmental Impact Assessment (EIA) process. Give reasons.

[2.0 Marks]

 Explain briefly the nature of the decision-making process of selecting an appropriate action among several alternative actions suggested by an EIA report.

[2.0 Marks]

Q3. a) During the construction phase of an industrial estate, name a primary environmental impact that is likely to occur. Explain how it may induce a secondary, tertiary or higher order impact/s.

[2.0 Marks]

b) "Sustainable development is important to improve the livelihoods of the people in a country." Discuss the above statement highlighting the meaning of the term 'sustainable development'.

[2.0 Marks]

c) Discuss different strategies which should be included in a strategic plan aimed to achieve a sustainable development in a developing country.

[4.0 Marks]

d) State the factors that have to be considered in selecting a land to construct a residential building.

[3.0 Marks]

e) i) Briefly explain why traps should be included with the sanitary appliances.

ii) With the aid of sketches, describe the different types of 'traps' with respect to their shapes.

[2.5 Marks]

f) To ensure efficient operation, what are the important factors that should be considered when laying drains below ground?

[2.5 Marks]

- Q4. a) Identify and explain the differences of the following terms
 - i) Plane Surveying and Geodetic Surveying.
 - ii) Geological Surveying and Geographical Surveying.

[2.0 Marks]

- b) i) What is the purpose of taking tie measurements for stations in tape and offset surveying?
 - ii) Briefly explain the taking of tie measurements with the aid of sketches.

[2.0 Marks]

c) What are the factors to be considered in selecting stations (or control points) for tape and offset surveying?

[3.0 Marks]

d) State the differences between the dumpy level and the tilting level.

[3.0 Marks]

- e) Describe the checks to be carried out in levelling procedure to ensure following:
 - i) Accuracy of field work.
 - ii) Accuracy of field book calculations.

[2.0 Marks]

f) The extract shown in Table Q4 is from a level book and shows staff readings taken between two Temporary Bench Marks (TBMs) 'A' and 'B'. Calculate reduced levels of all the points by rise and fall method.

[4.0 Marks]

Table Q4

		lable Q4	
Backsight	Intermediate	Foresight	Remarks
The second secon	sight		
3.150			TBM 'A' 100.00 m
1.770		3.850	Change point (CP) 1
	2.200		P
2.430		1.850	CP 2
	2.440		Q
2.800		1.340	CP3
1.185	·	2.010	CP 4
	2.735		R
0.720		1.685	CP 5
		1.525	TBM 'B' 99.795 m

Q5. a) State the factors which need to be considered in choosing materials for different types of structures.

[2.0 Marks]

b) State the advantages of steel structures compared to concrete structures.

[2.5 Marks]

c) Clay is one of the suitable materials for making bricks. Explain preliminary test that can be used in determining the suitability of clay sample to make bricks.

[2.5 Marks]

- d) Describe following terms related to concreting.
 - i) Compaction.
 - ii) Curing.

[3.0 Marks]

e) Beam AB supported at Points P and Q is subjected to series of point and uniformely distributed loads as shown in Fig. Q5. Point loads at the end of two over hangs, Point A and B, are 10 kN each. Point load at the middle of the beam is 20 kN. Uniformly distributed load between the supports P and Q is 2kN/m. Draw Shear Force Diagram (SFD) and Bending Moment Diagram (BMD) of the beam AB.

[6.0 Marks]

