## 00 0000 · 00000

## **UNIVERSITY OF RUHUNA**

## Faculty of Engineering

End-Semester 3 (Repeat) Examination in Engineering: August 2015

Module Number: ME3307

Module Name: Fluid Mechanics

[Three Hours]

[Answer all questions, each question carries twelve marks]

Q1 a) Compare the growth of laminar and turbulent boundary layer thickness in a two dimensional flow along a flat plate.

[3 Marks]

- b) An advertising board with dimension 4 m x 3 m is mounted on the top of a truck as shown in **Figure Q1**. The thickness of the board is negligible and its 3 m edge is faced in the direction of motion of the truck. If the truck moves in a straight road with a speed of 80 km/hr, determine the following,
  - i) The drag force on the board due to boundary layer development,
  - ii) The additional power needed for the truck due to the drag on the board,
  - iii) If the board length increases one meter more, what percentage of power is needed to be increased?

[9 Marks]

Note : Assume that kinematic viscosity =  $1.53 \times 10^{-5} \text{ m}^2/\text{s}$  and density =  $1.248 \text{ kg/m}^3$  for air.

Water is pumped from the sump side to an overhead storage tank, which is vented to atmosphere, by means of a pump discharging through a pipeline 50 m long and 0.1 m in diameter. The static pressure at the pump outlet into the pipeline is 2.8 bar (gauge pressure). There is a flow control valve at a distance of 20 m from the pump outlet. The flow control valve is fully open and has a negligible head loss at that condition. The head loss through the 90° bends can be estimated by the equation 1.3V<sup>2</sup>/2g. The pipe line enters the overhead tank 10 m above the level of the pump outlet and 6 m below surface of the water in the tank

as shown in the **Figure Q2**. If the friction factor f for the pipe is 0.007 calculate the following, assuming that the velocity head at the pump outlet is negligible,

i) The volume rate of flow in the pipeline

water [4 Marks]

ii) The gauge pressure of the oil at the entry to the control valve,

[4 Marks]

- iii) Sketch the hydraulic gradient line putting in the most important values. [4 Marks]
- Q3 a) Explain the important benefits which designers and engineers in the field of fluid mechanics expect by conducting hydraulic model studies.

[2 Marks]

b) The rate of flow Q of a fluid of density  $\rho$  and viscosity  $\mu$  is to be measured by means of an orifice meter of diameter d installed in the pipeline of diameter D. The pressure loss over the orifice plate is  $\Delta p$ . Show by using the method of dimensional analysis that

$$Q = Cd^2 \sqrt{\frac{\Delta p}{\rho}}$$

in which C is a discharge coefficient dependent upon the parameter  $\frac{\rho Q}{\mu d}$  and d/D.

[5 Marks]

- c) A model of a fishing boat 70 cm long is tested in a towing tank at a speed of 40 cm per second. If the real boat is 15 m long, determine the following,
  - i) The corresponding speed of the real boat,
  - ii) The propulsive force required for the real boat when the model requires a force of 2.5 N in the towing tank.

[5 Marks]

Q4 a) For what purposes are pumps used in engineering applications? Explain three different types of pumps by paying attention to their application.

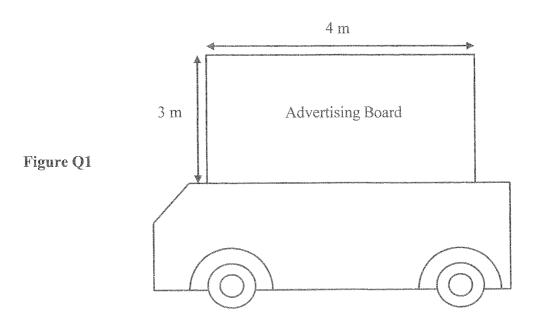
[3 Marks]

b) Draw a neat sketch of a screw pump and explain how it accomplishes pumping of a liquid.

[3 Marks]

c) Explain a type of centrifugal pump that can be used to lift the water with solid particles.

[3 Marks]


d) Why should the centrifugal pump manufacturers provide performance characteristic curves of the pump to users?

[3 Marks]

- Q5 a) Define and explain the following efficiencies of a centrifugal pump,
  - i) The manometric efficiency
  - ii) The mechanical efficiency
  - iii) The overall efficiency.

[2 Marks]

- b) A centrifugal pump delivers water against a net head of 15.5 m with a designed speed of 1500 rpm. The vanes are curved back at an angle 30° with the periphery. The impeller diameter at outlet is 30 cm and outlet width 5 cm. The manometric efficiency of the pump is estimated as 95%. Determine the following of the pump,
  - i) The theoretical head, [2 Marks]ii) The velocity of the flow through the impeller, [2 Marks]
  - iii) The discharge, [3 Marks]
  - iv) The power required, if the pump's overall efficiency is 80%. [3 Marks]



Page 3 of 4

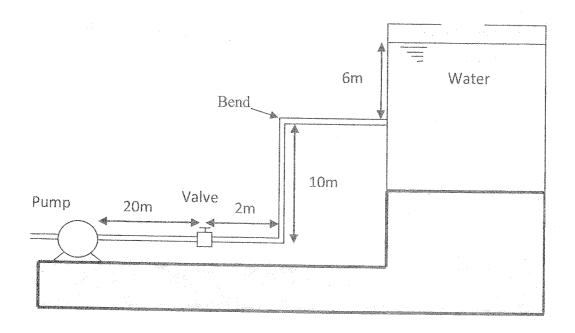



Figure Q2