\qquad

FIRST BPHARM PART I EXAMINATION - FEBRUARY 2022

PH1152 : MATHEMATICS - SEQ

TIME: TWO HOURS

INSTRUCTIONS

- There are four questions in this paper.
- Answer all questions.
- Calculators will be provided.
- No paper should be removed from the examination hall.
- Do not use any correction fluid.
- Use illustrations where necessary.

1. a) Find the following limits:
(i) $\lim _{t \rightarrow 4} \frac{t^{2}-4 t}{t^{2}-3 t-4}$
(ii) $\lim _{\ell \rightarrow 0} \frac{\sqrt{1+\ell}-1}{\ell}$
b) The per capita growth rate r of Escherichia coli bacteria can be modelled by the function

$$
r=\frac{s n}{k+n},
$$

where n is the concentration of the nutrient, s is its saturation level, and k is a positive constant.
(i) Calculate $\frac{d r}{d n}$ using the first principles.
(ii) Interpret $\frac{d r}{d n}$.
(iii) Sketch r and $\frac{d r}{d n}$ on the same axes as n varies.
c) In an experiment with the protozoan Paramecium, the protozoan population size $P(t)$ was modelled using the function

$$
P(t)=\frac{61}{1+31 e^{-0.7944 t}},
$$

where t is measured in days. According to this model, how fast was the population growing after 8 days?
2. a) Find an equation of the tangent line to the parabola $y=x^{2}-8 x+12$ at the point $(3,-3)$ and sketch both parabola and tangent line.
b) Consider the function $f(x)=x^{4}-8 x^{2}$.
(i) Find the stationary points of the function $f(x)$.
(ii) Classify the above stationary points as maxima or minima using the second derivative $f^{\prime \prime}(x)$.
3. a) Consider the two variable function $f(x, y)=e^{x^{2}+y^{2}}$.
(i) Find the first partial derivatives $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$.
(ii) Verify that

$$
\frac{\partial^{2} f(x, y)}{\partial x \partial y}=\frac{\partial^{2} f(x, y)}{\partial y \partial x} .
$$

(iii) Find the total differential of f at the point $(1,1)$.
b) Show that the function

$$
g(x, y)=\frac{x^{3}+y^{3}}{x-y}
$$

is homogeneous of degree 2 and satisfies the Euler's theorem.
4. a) Using the method of integration by parts, show that

$$
\int x e^{x} d x=x e^{x}-e^{x}+C
$$

where C is the constant of integration.
Use the method of integration by parts and the above result to evaluate

$$
\int_{0}^{1} x^{2} e^{x} d x
$$

b) If K is a constant, evaluate the integral

$$
\int \frac{K}{N(K-N)} d N
$$

using the method of partial fractions.
c) Test the differential equation

$$
\left(3 x^{2}+y \cos x\right) d x+\left(\sin x-4 y^{3}\right) d y=0
$$

for exactness. If it is exact, then find its solution.

