UNIVERSITY OF RUHUNA

Faculty of Engineering

End-Semester 1 Examination in Engineering: May, 2022

Module Number: IS1402

Module Name: Mathematical Fundamentals for Engineers

[Three hours]

[Answer all questions, each question carries twelve marks]

Q1. a) Given that

$$z = \frac{\sqrt{-26 - 6\sqrt{3}i}}{2 + \sqrt{3}i}$$

- Express z in the form a + bi, where $a, b \in R$ and a > 0. i.)
- ii.) Convert z into polar form.
- Write down the modulus and the argument of z. iii.)

[3 Marks]

Let n be a positive integer, and b)

$$w_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \qquad k = 0, 1, 2, ..., n - 1$$

Show that

- w_k is a one of the n^{th} roots of unity. i.)
- If w is the primitive root of unity then $w_k = w^k$ ii.)
- For n > 1, summation of all the n^{th} roots of unity is zero. iii.)

[4 Marks]

If ω is a complex cubic root of unity, without computing ω , show that c)

$$\begin{bmatrix} \omega & \omega^2 & -1 \\ \omega^2 & -1 & \omega \\ -1 & \omega & \omega^2 \end{bmatrix}^2 = 2 \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

[2 Marks]

Express $\cos^5 \theta$ in terms of muliples of $\cos \theta$ and $\sin \theta$. d)

Hence, find

$$\int_{0}^{\pi/2} \cos^5 \theta \, d\theta$$

[3 Mark]

- Q2. a) i.) Briefly explain singular and non-singular matices by giving an example for each.
 - ii.) Write down five properties of the determinant of a matrix.

[4 Marks]

- b) Define
 - i.) a minor
 - ii.) a cofactor
 - iii.) the adjoint

of a matrix.

Find the adjoint of the matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & 3 \\ 1 & 3 & 3 \end{bmatrix}.$$

[4 Marks]

c) Determine the values of α and β , which the system

$$2x + y + z = 3$$

$$x - 2y + 3z = \alpha$$

$$x + 3y + \beta z = 4$$

has

- i.) unique solution
- ii.) infinitely many solutions
- iii.) no solutions

Solve the system for $\alpha = -6$ and $\beta = 3$.

[4 Marks]

- Q3 a) i.) Explain what is meant by the statement, f(x) is continuous at a point a'.
 - ii.) Discuss the continuity of the function

function
$$f(x) = \begin{cases} 2x - 1 & x < -2 \\ x + 1 & -2 \le x < 1 \\ 5 - 3x & x \ge 1 \end{cases}$$

iii.) Sketch the graph of y = |2x - 1| - 2|x + 1| + |x - 2|

[5 Marks]

- b) i.) Show that f(x) = |x 2| continuous but not differentiable at x = 2.
 - ii.) If f and g are differentiable functions show that $f \circ g$ is also differentiable.
 - iii.) Let $f(x) = x^3$ and $g(x) = \tan x$. Determine $(f \circ g)'$ by using ii.) in above.

[5 Marks]

c) Evaluate the following limits, if they exist.

i.)
$$\lim_{x\to 0} \frac{1-e^{1/x}}{2+e^{1/x}}$$

ii.)
$$\lim_{x \to 1} \frac{(x^2 + 1)(x^2 + x - 1) + x^2 - 3}{x - 1}$$

[2 Marks]

- Q4. a) i.) State the Mean Value Theorem.
 - ii.) Let f and f' be continuous and differentiable functions on an open interval (α, β) , where $\alpha/2 < a < b < \beta/2$. If the second derivative of f is zero on (α, β) for all x in the given interval, by applying Mean Value Theorem twice in the intervals [2a, a + b] and [a + b, 2b], show that

$$f(2a) + f(2b) = 2f(a+b).$$

[3 Marks]

b) i.) If f and g are continuous on the closed interval [a,b] and differentiable on the open interval (a,b) then show that there exists $c \in (a,b)$, such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

- ii.) State the L'Hospital's Rule
- iii.) Use L'Hospital's Rule to evaluate

$$\lim_{x \to 0} \frac{2\sin x - \sin 2x}{x - \sin x}$$

iv.) Obtain the power series expansion of log(1 + x) about x = 0.

[5 Marks]

c) i.) Let z = f(x, y) be a continuous and differentiable function on R^2 . Show that

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

ii.) If z = f(x, y), where $x = e^r \cos \theta$ and $y = e^r \sin \theta$, show that

$$\left(\frac{\partial z}{\partial r}\right)^{2} + \left(\frac{\partial z}{\partial \theta}\right)^{2} \neq e^{2r} \left[\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} \right]$$

[4 Marks]

- Q5. a) i.) Briefly explain what is meant by 'Unit vector' and 'Position vector'.
 - ii.) \overrightarrow{OAB} is a triangle such that $\overrightarrow{OA} = 2\mathbf{a}$ and $\overrightarrow{OB} = 3\mathbf{b}$. Find \overrightarrow{AB} in terms of a and b.

If P is the point on AB such that AP: PB = 2:3, show that \overrightarrow{OP} is parallel to the vector, $(\mathbf{a} + \mathbf{b})$.

[4 Marks]

b) A rigid body is spinning with angular velocity 9 radians/sec about an axis OR, where R is $(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ and O is the origin. Find the velocity of the point $(-3\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ on the body.

[3 Marks]

- c) i.) The temperature at any point in space is given by T = 2xy + yz + zx. Determine the derivative of T, (i.e. ∇T), in the direction of the vector $(4\mathbf{i} 3\mathbf{k})$ at the point (1,1,1).
 - ii.) Given the vector field,

$$V = (x^2 - y^2 + 2xz)\mathbf{i} + (xz - xy + yz)\mathbf{j} + (x^2 + z^2)\mathbf{k}.$$

Find curl(V).

Show that the vectors given by $curl(\mathbf{V})$ at $P_0(0,2,-1)$ and $P_1(-2,-3,13)$ are orthogonal.

[5 Marks]