UNIVERSITY OF RUHUNA

BACHELOR OF SCIENCE GENERAL DEGREE LEVEL-II (SEMESTER-II) EXAMINATION – JUNE / JULY 2022

SUBJECT: Chemistry TIME: Two (02) Hours

COURSE UNIT: CHE 2212 (Descriptive Inorganic Chemistry II)

Answer four (04) questions only.

 $\begin{array}{lll} \mbox{Velocity of light, (c)} & = 2.998 \times 10^8 \mbox{ m s}^{-1} \\ \mbox{Avogadro's number, (N_A)} & = 6.022 \times 10^{23} \mbox{ mol}^{-1} \\ \mbox{Planck's constant, (h)} & = 6.626 \times 10^{-34} \mbox{ J s} \\ \mbox{Electron charge, (e)} & = 1.602 \times 10^{-19} \mbox{ C} \\ \mbox{Proton mass, (m_p)} & = 1.673 \times 10^{-27} \mbox{ kg} \\ \mbox{Electron mass, (m_e)} & = 9.10 \times 10^{-31} \mbox{ kg} \end{array}$

- (01) Answer all parts.
 - (a) Briefly explain the following statements.
 - (i) $[V(phen)_3]^{3+}$ is labile whereas $[V(H_2O)_6]_8^{2+}$ is inert.
 - (ii) Exchange rate of CN in $[Fe(CN)_6]^4$ is relatively higher than that in $[Fe(CN)_6]^3$.

(20 marks)

- (b) Sketch a reaction profile for substitution in a square planar complex in which,
 - (i) a five-coordinate intermediate exists, but bond breaking is more difficult than bond making.
 - (ii) a five-coordinate intermediate exists, but bond making is more difficult than bond breaking.

(20 marks)

(c) Consider the following square-planar substitution reaction which is carried out in CH₃OH at 25 °C.

trans-Pt(py)₂Cl₂ + CN \rightarrow Pt(py)₂Cl(CN) + Cl

- (i) Write the rate law for this reaction and clearly define the terms associated with it.
- (ii) Explain briefly what role CH₃OH plays in this reaction.
- (iii) If the reaction is carried out in C₆H₆ what changes would you expect in the mechanism? Write a rate law that accounts for the changes in C₆H₆.

- (iv) If 1 mol of trans-Pt(py)₂Cl(CN) is treated with 1 mol of CN⁻, what product would you expect? Clearly state the geometry of the product formed.
- (v) What role(s) does platinum bound CN play in the reaction to reduce the activation energy?

(60 marks)

(02) Answer all parts.

(a) Which of the following complexes are organometallic complexes?

His 364 (12 marks)

(b) Sketch structures, with their proper geometries, for the following organometallic compounds.

(iv)

- (i) CpRuCl(=CHCO₂Et)(PPh₃)
- (ii) $Co_2(\mu\text{-CO})_2(CO)_6$ (Co-Co bond)
- (iii) trans-HRh(CO)(PPh₃)₂
- (iv) $Ir_2(\mu-Cl)_2(CO)_4$
- (v) Cp₂TiCl₂

(iii)

(15 marks)

(c) Provide the total electron count for each central metal of the following organometallic complexes

Note: Steps need to be shown to obtain full marks.

- (i) $[CpCo(\eta^3-C_3H_5)]PF_6$
- (ii) $(\eta^5-C_5H_5)Fe(CO)_2Cl$
- (iii) $[Mn(CO)_6]^+$
- (iv)

(v)

(35 marks)

- (d) Predict the products of the following organometallic reactions:
 - (i) Ni + 4 CO

- (iii) $Cr(CO)_6 + PPh_3 \rightarrow$
- (iv) $Re(CO)_5Br + en \rightarrow$
- (v) $Co_2(CO)_8 + 2 Na \rightarrow$

Note: en: ethylenediamine

(25 marks)

(e) The iron carbonyl organometallic complex A = Na[Fe(CO)₃(NO)] has been synthesized in 1983 by a research group of University of Texas. Later on, it was found that compound A obeys the 18 electron rule. Determine the coordination mode of NO ligand in complex A.
(13 marks)

(03) Answer all parts.

- (a) Molecular symmetry helps us understanding molecular properties of chemical entities.
 - (i) List the symmetry elements with their standard symbols.
 - (ii) Write down three applications of symmetry in chemistry.
 - (iii) Illustrate the following symmetry elements using the BCl₃ molecule.
 - (I) Principal rotational axis
 - (II) Horizontal mirror plane
 - (III) Vertical mirror plane

(30 marks)

(b) Perform the operations shown and draw the new configurations for the following molecules/objects.

(20 marks)

(c) Distinguish the symmetry operations out of the above b(i)-b(iv).

(10 marks)

(d) Giving the major symmetry elements derive the point groups of the following molecules.

(ii)
$$CI \xrightarrow{CI} P - CI$$
 (iv) $H \xrightarrow{N} H$ (40 marks)

(04) Answer all parts.

(a) Some properties of selected lanthanide elements are given in the following table.

Element	Ionic Radius (M ³⁺)	Number of unpaired electrons	Σm
Samarium (Sm)	96	1	0
Neodymium (Nd)	99	3	0
Praseodymium (Pr)	101	2	1
Gadolinium (Gd)	94	7	0

- (i) Write the ground state electronic configuration of each of the following lanthanide atoms/ions;
 - (I) Nd (II) Sm^{3+} (III) Gd^{3+} (IV) Pr
- (ii) Calculate the magnetic moments of Gd³⁺.
- (iii) Briefly explain why the ionic radius of Nd³⁺ is greater than that of Gd³⁺.
- (iv) Explain how ion exchange chromatography could be used to separate mixtures of lanthanide elements.

(v) In a typical separation of a lanthanide mixture by ion exchange chromatography, the following chromatograph was obtained. Give reasons for the overlapping of these peaks and propose a method to overcome this poor separation.

(50 marks)

(b) Liquid SO_2 and liquid $\mathrm{N}_2\mathrm{O}_4$ are two non-aqueous solvents used in research and industry.

- (i) Write equations for the self-ionization of the two solvents listed above.
- (ii) From these self-ionized species, identify the acidic and basic species.
- (iii) Show that NO₂ is not a product when Cu₂ dissolves in liq. N₂O₄.
- (iv) Predict the products of the following reactions and write balanced chemical equations.
 - (I) $SO_2Cl_2 + NH_3 \rightarrow$
 - (II) $BCl_3 + NH_3 \rightarrow$
 - (III) SOCl₂ + Al₂(SO₃)₃ \rightarrow
 - (IV) $[NO][ClO_4] + NaNO_3 \rightarrow$

(50 marks)

(05) Answer all parts.

- (a) Aqueous solutions of transition metal complexes show various colours. The intensities of the absorption bands of such complexes are governed by two selection rules.
 - (i) Briefly explain why transition metal complexes show various colours in aqueous solutions.
 - (ii) State the selection rules pertaining to the electronic spectra of transition metal complexes.

- (iii) Giving reasons briefly explain the following statements related to the colour intensities of transition metal complexes in aqueous solutions.
 - I. $[FeF_6]^{3-}$ is colourless whereas $]CoF_6]^{3-}$ is coloured.
 - II. The colour of trans- $[Co(en)_2F_2]^+$ is less intense than that of cis- $[Co(en)_2F_2]^+$. (en –ethylenediamine)
 - III. KMnO₄ is dark purple whereas $[Mn(H_2O)_6]^{2+}$ is pale pink.

(50 marks)

b) The UV – visible spectrum of $[V(H_2O)_6]^{3+}$ is given below.

- Wave number, cm⁻¹
- (i) Calculate the number of possible microstates of the metal ion in the above complex.
- (ii) Derive all possible term symbols for the above metal ion.
- (iii) Giving reasons, identify the ground and first excited state term symbols from the term symbols you derived in (ii) above.
- (iv) Construct the Orgel diagram for the complex.
- (v) Label the electronic transitions corresponding to the absorption peaks in the above spectrum, on the Orgel diagram constructed (iv) above.

(50 marks)

aaaaaaaaaaaaaaaaaa

PERIODIC TABLE OF THE ELEMENTS

