| dc.contributor.author | Nandani, E.J.K.P. | |
| dc.contributor.author | Romer, R.A. | |
| dc.contributor.author | Tan, Shina | |
| dc.contributor.author | Guan, Xi-Wen | |
| dc.date.accessioned | 2022-12-12T04:31:37Z | |
| dc.date.available | 2022-12-12T04:31:37Z | |
| dc.date.issued | 2016-05-26 | |
| dc.identifier.citation | Nandani, E., Römer, R. A., Tan, S., & Guan, X.-W. (2016). Higher-order local and non-local correlations for 1D strongly interacting Bose gas. New Journal of Physics, 18(5), 055014. doi:10.1088/1367-2630/18/5/055014 | en_US |
| dc.identifier.uri | http://ir.lib.ruh.ac.lk/xmlui/handle/iruor/9754 | |
| dc.description.abstract | The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, gM, of the one-dimensional (1D)strongly repulsive Bose gas within the Lieb–Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter a g = -1 2 , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via ki » aki F with i = ¼1, ,N. Here γ is the dimensionless interaction strength within the Lieb–Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions gM in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g2 and g3 with sub-leading terms(see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormoset al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions () ( ) ( ) () áY YY Y † † x xy y 1 M M ñ 1 of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here Y(x)is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the many-body | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | IOP Publishing Ltd and Deutsche Physikalische Gesellschaft | en_US |
| dc.subject | high order correlation functions | en_US |
| dc.subject | generalized exclusion statistics | en_US |
| dc.subject | Fermi distribution | en_US |
| dc.subject | Bethe ansatz weave functions | en_US |
| dc.title | Higher-order local and non-local correlations for 1D strongly interacting Bose gas | en_US |
| dc.type | Article | en_US |